Skip to main content

Analysis functions to quantify inputs importance in neural network models.

Project description

NeuralSens

Jaime Pizarroso Gonzalo, jpizarroso@comillas.edu

Antonio Muñoz San Roque, Antonio.Munoz@iit.comillas.edu

José Portela González, jose.portela@iit.comillas.edu

CRAN status Travis build status AppVeyor build status CRAN_Download_Badge

This is the development repository for the NeuralSens package. Functions within this package can be used for the analysis of neural network models created in R.

The current version of this package can be installed from Github:

install.packages('devtools')
library(devtools)
install_github('JaiPizGon/NeuralSens')

The last version can be installed from CRAN:

install.packages('NeuralSens')

Bug reports

Please submit any bug reports (or suggestions) using the issues tab of the GitHub page.

Functions

One function is available to analyze the sensitivity of a multilayer perceptron, evaluating variable importance and plotting the analysis results. A sample dataset is also provided for use with the examples. The function has S3 methods developed for neural networks from the following packages: nnet, neuralnet, RSNNS, caret, neural, h2o and forecast. Numeric inputs that describe model weights are also acceptable.

Start by loading the package and the sample dataset.

library(NeuralSens)
data(DAILY_DEMAND_TR)

The SensAnalysisMLP function analyze the sensitivity of the output to the input and plots three graphics with information about this analysis. To calculate this sensitivity it calculates the partial derivatives of the output to the inputs using the training data. The first plot shows information between the mean and the standard deviation of the sensitivity among the training data:

  • if the mean is different from zero, it means that the output depends on the input because the output changes when the input change.
  • if the mean is nearly zero, it means that the output could not depend on the input. If the standard deviation is also near zero it almost sure that the output does not depend on the variable because for all the training data the partial derivative is zero.
  • if the standard deviation is different from zero it means the the output has a non-linear relation with the input because the partial derivative derivative of the output depends on the value of the input.
  • if the standard deviation is nearly zero it means that the output has a linear relation with the input because the partial derivative of the output does not depend on the value of the input. The second plot gives an absolute measure to the importance of the inputs, by calculating the sum of the squares of the partial derivatives of the output to the inputs. The third plot is a density plot of the partial derivatives of the output to the inputs among the training data, giving similar information as the first plot.
# Scale the data
DAILY_DEMAND_TR[,4] <- DAILY_DEMAND_TR[,4]/10
DAILY_DEMAND_TR[,2] <- DAILY_DEMAND_TR[,2]/100
# Parameters of the neural network
hidden_neurons <- 5
iters <- 250
decay <- 0.1

# create neural network
library(caret)
## Warning: package 'caret' was built under R version 4.1.3
ctrl_tune <- trainControl(method = "boot",
                          savePredictions = FALSE,
                          summaryFunction = defaultSummary)
set.seed(150) #For replication
mod <- caret::train(form = DEM~TEMP + WD,
                    data = DAILY_DEMAND_TR,
                    method = "nnet",
                    linout = TRUE,
                    tuneGrid = data.frame(size = hidden_neurons,
                                          decay = decay),
                    maxit = iters,
                    preProcess = c("center","scale"),
                    trControl = ctrl_tune,
                    metric = "RMSE")

# Analysis of the neural network
sens <- SensAnalysisMLP(mod)

Apart from the plot created with the SensAnalysisMLP function by an internal call to SensitivityPlot, other plots can be obtained to analyze the neural network model. If it is a forecast problem, the SensTimePlot function returns a plot which shows how the sensitivity of the output changes over the time of the data.

SensTimePlot(sens, fdata = DAILY_DEMAND_TR, facet = TRUE)

Also, a more detailed plot about the distribution of the variables can be obtained with the SensFeaturePlot function. This function returns a scatter plot over a violin plot for each input variable, where each point represent a sensitivity value of a sample of the dataset. The color of each point depends on the value of the input for its corresponding sample.

SensFeaturePlot(sens, fdata = DAILY_DEMAND_TR)

Citation

Please, to cite NeuralSens in publications use:

Pizarroso J, Portela J, Muñoz A (2022). “NeuralSens: Sensitivity Analysis of Neural Networks.” Journal of Statistical Software, 102(7), 1-36. doi: 10.18637/jss.v102.i07 (URL: https://doi.org/10.18637/jss.v102.i07).

License

This package is released in the public domain under the General Public License GPL.

Association

Package created in the Institute for Research in Technology (IIT), link to homepage

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neuralsens-0.0.4.dev4.tar.gz (25.9 kB view details)

Uploaded Source

Built Distribution

neuralsens-0.0.4.dev4-py3-none-any.whl (23.4 kB view details)

Uploaded Python 3

File details

Details for the file neuralsens-0.0.4.dev4.tar.gz.

File metadata

  • Download URL: neuralsens-0.0.4.dev4.tar.gz
  • Upload date:
  • Size: 25.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.7

File hashes

Hashes for neuralsens-0.0.4.dev4.tar.gz
Algorithm Hash digest
SHA256 39ea315d15f15fbf0032c47a3cb9d514142a9117f113011dd94105a71e5f58fb
MD5 5805d21b6b46dc358aa02c4a409b26d2
BLAKE2b-256 43d4fac8a4eb228efc959fafd6c7e7460f140b5460295576da1677e660076294

See more details on using hashes here.

File details

Details for the file neuralsens-0.0.4.dev4-py3-none-any.whl.

File metadata

File hashes

Hashes for neuralsens-0.0.4.dev4-py3-none-any.whl
Algorithm Hash digest
SHA256 35a2f4b6aa94c0e75e96a4c37b61336a19f68ea92e8ff3900c47ce35e2cd0d34
MD5 a01bdc8488358b665366a8254a096ec2
BLAKE2b-256 04950529613b75b5e396711573f7e053a4e02d7d7eb0f3f4d6134e986fa5ed2c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page