Skip to main content

TensorFlow steps, savers, and utilities for Neuraxle. Neuraxle is a Machine Learning (ML) library for building neat pipelines, providing the right abstractions to both ease research, development, and deployment of your ML applications.

Project description

Neuraxle-TensorFlow

TensorFlow steps, savers, and utilities for Neuraxle.

Neuraxle is a Machine Learning (ML) library for building neat pipelines, providing the right abstractions to both ease research, development, and deployment of your ML applications.

Usage example

See also a complete example

Tensorflow 1

Create a tensorflow 1 model step by giving it a graph, an optimizer, and a loss function.

def create_graph(step: TensorflowV1ModelStep, context: ExecutionContext):
    tf.placeholder('float', name='data_inputs')
    tf.placeholder('float', name='expected_outputs')

    tf.Variable(np.random.rand(), name='weight')
    tf.Variable(np.random.rand(), name='bias')
    
    return tf.add(tf.multiply(step['data_inputs'], step['weight']), step['bias'])
    
"""
# Note: you can also return a tuple containing two elements : tensor for training (fit), tensor for inference (transform)
def create_graph(step: TensorflowV1ModelStep, context: ExecutionContext)
    # ...
    decoder_outputs_training = create_training_decoder(step, encoder_state, decoder_cell)
    decoder_outputs_inference = create_inference_decoder(step, encoder_state, decoder_cell)

    return decoder_outputs_training, decoder_outputs_inference
"""


def create_loss(step: TensorflowV1ModelStep, context: ExecutionContext):
    return tf.reduce_sum(tf.pow(step['output'] - step['expected_outputs'], 2)) / (2 * N_SAMPLES)

def create_optimizer(step: TensorflowV1ModelStep, context: ExecutionContext):
    return tf.train.GradientDescentOptimizer(step.hyperparams['learning_rate'])

model_step = TensorflowV1ModelStep(
    create_grah=create_graph,
    create_loss=create_loss,
    create_optimizer=create_optimizer,
    has_expected_outputs=True
).set_hyperparams(HyperparameterSamples({
    'learning_rate': 0.01
})).set_hyperparams_space(HyperparameterSpace({
    'learning_rate': LogUniform(0.0001, 0.01)
}))

Tensorflow 2

Create a tensorflow 2 model step by giving it a model, an optimizer, and a loss function.

def create_model(step: Tensorflow2ModelStep, context: ExecutionContext):
    return LinearModel()

def create_optimizer(step: Tensorflow2ModelStep, context: ExecutionContext):
    return tf.keras.optimizers.Adam(0.1)

def create_loss(step: Tensorflow2ModelStep, expected_outputs, predicted_outputs):
    return tf.reduce_mean(tf.abs(predicted_outputs - expected_outputs))

model_step = Tensorflow2ModelStep(
    create_model=create_model,
    create_optimizer=create_optimizer,
    create_loss=create_loss,
    tf_model_checkpoint_folder=os.path.join(tmpdir, 'tf_checkpoints')
)

Deep Learning Pipeline

batch_size = 100
epochs = 3
validation_size = 0.15
max_plotted_validation_predictions = 10

seq2seq_pipeline_hyperparams = HyperparameterSamples({
    'hidden_dim': 100,
    'layers_stacked_count': 2,
    'lambda_loss_amount': 0.0003,
    'learning_rate': 0.006,
    'window_size_future': sequence_length,
    'output_dim': output_dim,
    'input_dim': input_dim
})
feature_0_metric = metric_3d_to_2d_wrapper(mean_squared_error)
metrics = {'mse': feature_0_metric}

signal_prediction_pipeline = Pipeline([
    TrainOnly(DataShuffler()),
    WindowTimeSeries(),
    MeanStdNormalizer(),
    MiniBatchSequentialPipeline([
        Tensorflow2ModelStep(
            create_model=create_model,
            create_loss=create_loss,
            create_optimizer=create_optimizer,
            print_loss=True
        ).set_hyperparams(seq2seq_pipeline_hyperparams)
    ])
])

pipeline, outputs = pipeline.fit_transform(data_inputs, expected_outputs)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neuraxle_tensorflow-0.1.2.tar.gz (8.4 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page