Skip to main content

TensorFlow steps, savers, and utilities for Neuraxle. Neuraxle is a Machine Learning (ML) library for building neat pipelines, providing the right abstractions to both ease research, development, and deployment of your ML applications.

Project description

Neuraxle-TensorFlow

TensorFlow steps, savers, and utilities for Neuraxle.

Neuraxle is a Machine Learning (ML) library for building neat pipelines, providing the right abstractions to both ease research, development, and deployment of your ML applications.

Usage example

See also a complete example

Tensorflow 1

Create a tensorflow 1 model step by giving it a graph, an optimizer, and a loss function.

def create_graph(step: TensorflowV1ModelStep, context: ExecutionContext):
    tf.placeholder('float', name='data_inputs')
    tf.placeholder('float', name='expected_outputs')

    tf.Variable(np.random.rand(), name='weight')
    tf.Variable(np.random.rand(), name='bias')
    
    return tf.add(tf.multiply(step['data_inputs'], step['weight']), step['bias'])
    
"""
# Note: you can also return a tuple containing two elements : tensor for training (fit), tensor for inference (transform)
def create_graph(step: TensorflowV1ModelStep, context: ExecutionContext)
    # ...
    decoder_outputs_training = create_training_decoder(step, encoder_state, decoder_cell)
    decoder_outputs_inference = create_inference_decoder(step, encoder_state, decoder_cell)

    return decoder_outputs_training, decoder_outputs_inference
"""


def create_loss(step: TensorflowV1ModelStep, context: ExecutionContext):
    return tf.reduce_sum(tf.pow(step['output'] - step['expected_outputs'], 2)) / (2 * N_SAMPLES)

def create_optimizer(step: TensorflowV1ModelStep, context: ExecutionContext):
    return tf.train.GradientDescentOptimizer(step.hyperparams['learning_rate'])

model_step = TensorflowV1ModelStep(
    create_grah=create_graph,
    create_loss=create_loss,
    create_optimizer=create_optimizer,
    has_expected_outputs=True
).set_hyperparams(HyperparameterSamples({
    'learning_rate': 0.01
})).set_hyperparams_space(HyperparameterSpace({
    'learning_rate': LogUniform(0.0001, 0.01)
}))

Tensorflow 2

Create a tensorflow 2 model step by giving it a model, an optimizer, and a loss function.

def create_model(step: Tensorflow2ModelStep, context: ExecutionContext):
    return LinearModel()

def create_optimizer(step: Tensorflow2ModelStep, context: ExecutionContext):
    return tf.keras.optimizers.Adam(0.1)

def create_loss(step: Tensorflow2ModelStep, expected_outputs, predicted_outputs):
    return tf.reduce_mean(tf.abs(predicted_outputs - expected_outputs))

model_step = Tensorflow2ModelStep(
    create_model=create_model,
    create_optimizer=create_optimizer,
    create_loss=create_loss,
    tf_model_checkpoint_folder=os.path.join(tmpdir, 'tf_checkpoints')
)

Deep Learning Pipeline

batch_size = 100
epochs = 3
validation_size = 0.15
max_plotted_validation_predictions = 10

seq2seq_pipeline_hyperparams = HyperparameterSamples({
    'hidden_dim': 100,
    'layers_stacked_count': 2,
    'lambda_loss_amount': 0.0003,
    'learning_rate': 0.006,
    'window_size_future': sequence_length,
    'output_dim': output_dim,
    'input_dim': input_dim
})
feature_0_metric = metric_3d_to_2d_wrapper(mean_squared_error)
metrics = {'mse': feature_0_metric}

signal_prediction_pipeline = Pipeline([
    TrainOnly(DataShuffler()),
    WindowTimeSeries(),
    MeanStdNormalizer(),
    MiniBatchSequentialPipeline([
        Tensorflow2ModelStep(
            create_model=create_model,
            create_loss=create_loss,
            create_optimizer=create_optimizer,
            print_loss=True
        ).set_hyperparams(seq2seq_pipeline_hyperparams)
    ])
])

pipeline, outputs = pipeline.fit_transform(data_inputs, expected_outputs)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neuraxle_tensorflow-0.1.2.tar.gz (8.4 kB view details)

Uploaded Source

File details

Details for the file neuraxle_tensorflow-0.1.2.tar.gz.

File metadata

  • Download URL: neuraxle_tensorflow-0.1.2.tar.gz
  • Upload date:
  • Size: 8.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for neuraxle_tensorflow-0.1.2.tar.gz
Algorithm Hash digest
SHA256 6c60a9e6aa4a4b3b5b5639b267d08cfac1f4425ff3998133605f96b2f80299ee
MD5 4ecb8809e55b6761185b27fb700585d6
BLAKE2b-256 d947f123f87c57ffc20d1f02ef2733d6e6b0e54fb03c46eedb3839a5a8420e02

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page