Skip to main content

TensorFlow steps, savers, and utilities for Neuraxle. Neuraxle is a Machine Learning (ML) library for building neat pipelines, providing the right abstractions to both ease research, development, and deployment of your ML applications.

Project description

Neuraxle-TensorFlow

TensorFlow steps, savers, and utilities for Neuraxle.

Neuraxle is a Machine Learning (ML) library for building neat pipelines, providing the right abstractions to both ease research, development, and deployment of your ML applications.

Usage example

See also a complete example

Tensorflow 1

Create a tensorflow 1 model step by giving it a graph, an optimizer, and a loss function.

def create_graph(step: TensorflowV1ModelStep):
    tf.placeholder('float', name='data_inputs')
    tf.placeholder('float', name='expected_outputs')

    tf.Variable(np.random.rand(), name='weight')
    tf.Variable(np.random.rand(), name='bias')
    
    return tf.add(tf.multiply(step['data_inputs'], step['weight']), step['bias'])
    
"""
# Note: you can also return a tuple containing two elements : tensor for training (fit), tensor for inference (transform)
def create_graph(step: TensorflowV1ModelStep)
    # ...
    decoder_outputs_training = create_training_decoder(step, encoder_state, decoder_cell)
    decoder_outputs_inference = create_inference_decoder(step, encoder_state, decoder_cell)

    return decoder_outputs_training, decoder_outputs_inference
"""


def create_loss(step: TensorflowV1ModelStep):
    return tf.reduce_sum(tf.pow(step['output'] - step['expected_outputs'], 2)) / (2 * N_SAMPLES)

def create_optimizer(step: TensorflowV1ModelStep):
    return tf.train.GradientDescentOptimizer(step.hyperparams['learning_rate'])

model_step = TensorflowV1ModelStep(
    create_grah=create_graph,
    create_loss=create_loss,
    create_optimizer=create_optimizer,
    has_expected_outputs=True
).set_hyperparams(HyperparameterSamples({
    'learning_rate': 0.01
})).set_hyperparams_space(HyperparameterSpace({
    'learning_rate': LogUniform(0.0001, 0.01)
}))

Tensorflow 2

Create a tensorflow 2 model step by giving it a model, an optimizer, and a loss function.

def create_model(step: Tensorflow2ModelStep):
    return LinearModel()

def create_optimizer(step: Tensorflow2ModelStep):
    return tf.keras.optimizers.Adam(0.1)

def create_loss(step: Tensorflow2ModelStep, expected_outputs, predicted_outputs):
    return tf.reduce_mean(tf.abs(predicted_outputs - expected_outputs))

model_step = Tensorflow2ModelStep(
    create_model=create_model,
    create_optimizer=create_optimizer,
    create_loss=create_loss,
    tf_model_checkpoint_folder=os.path.join(tmpdir, 'tf_checkpoints')
)

Project details


Release history Release notifications

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for neuraxle-tensorflow, version 0.1.0
Filename, size File type Python version Upload date Hashes
Filename, size neuraxle_tensorflow-0.1.0.tar.gz (13.8 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page