Skip to main content

🧠 EEG/MEG self-supervised learning toolbox.

Project description

🔎 Overview

A minimalistic Python library for EEG/MEG deep learning research, primarely focused on self-supervised learning.

📦 Installation

Either clone this repository and perform a local install accordingly

git clone https://github.com/neurocode-ai/neurocode.git
cd neurocode
poetry install

or install the most recent release from the Python Package Index (PyPI).

pip install neurocode

🚀 Example usage

Below you can see an example adapted for a SSL training workflow using the SimCLR framework.

import torch

from pytorch_metric_learning import losses
from neurocode.datasets import SimulatedDataset, RecordingDataset
from neurocode.samplers import SignalSampler
from neurocode.models import SignalNet
from neurocode.training import SimCLR
from neurocode.datautil import manifold_plot, history_plot

sample_data = SimulatedDataset("sample", seed=7815891891337)
sample_data.read_from_file("MEG/sample/sample_audvis_raw.fif")

# create random extrapolated data from the raw MEG recording,
# you need to provide a location to a forward solution (source space) to use
sample_data.simulate("MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif")

dataset = RecordingDataset(sample_data.data(), sample_data.labels(), sfreq=200)
train, valid = dataset.train_valid_split(split=0.75)

samplers = {
  'train': SignalSampler(train.data(), train.labels(), train.info(), ...),
  'valid': SignalSampler(valid.data(), valid.labels(), valid.info(), ...),
}

device = "cuda" if torch.cuda.is_available() else "cpu"
model = SignalNet(...)
optimizer = torch.optim.Adam(model.parameters(), ...)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, ...)
criterion = losses.NTXentLoss()

# train the neural network using the self-supervised learning SimCLR framework,
# save or plot the history to see training loss evolution
simclr = SimCLR(model, device, ...)
history = simclr.fit(samplers, save_model=True)

📋 License

All code is to be held under a general MIT license, please see LICENSE for specific information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neurocode-1.0.0.tar.gz (27.7 kB view details)

Uploaded Source

Built Distribution

neurocode-1.0.0-py3-none-any.whl (53.1 kB view details)

Uploaded Python 3

File details

Details for the file neurocode-1.0.0.tar.gz.

File metadata

  • Download URL: neurocode-1.0.0.tar.gz
  • Upload date:
  • Size: 27.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.0 Linux/6.2.0-1016-azure

File hashes

Hashes for neurocode-1.0.0.tar.gz
Algorithm Hash digest
SHA256 e746837720a48169db9ffa3429f1c82108c60c988fa1e140fb9078e97d9b961b
MD5 24772f71bedbc4d014f0589400c4db72
BLAKE2b-256 250a58c4e297150550bd1f59a901a83a4296f761b7180294ec5795b77786cd63

See more details on using hashes here.

File details

Details for the file neurocode-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: neurocode-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 53.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.0 Linux/6.2.0-1016-azure

File hashes

Hashes for neurocode-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 66d256484e44d8ace1f652c1a83c8532ce48f94f2614a23f046b4d2bcd637aaa
MD5 df9437d5efcf31754f4b17ac47ea0e57
BLAKE2b-256 e5b4b03c81b8cc0a3244cfa3b4ddad976c28f1e184e42bc496a57b63ca54a6c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page