🧠 EEG/MEG self-supervised learning toolbox.
Project description
🔎 Overview
A minimalistic Python library for EEG/MEG deep learning research, primarely focused on self-supervised learning.
📦 Installation
Either clone this repository and perform a local install accordingly
git clone https://github.com/neurocode-ai/neurocode.git
cd neurocode
poetry install
or install the most recent release from the Python Package Index (PyPI).
pip install neurocode
🚀 Example usage
Below you can see an example adapted for a SSL training workflow using the SimCLR framework.
import torch
from pytorch_metric_learning import losses
from neurocode.datasets import SimulatedDataset, RecordingDataset
from neurocode.samplers import SignalSampler
from neurocode.models import SignalNet
from neurocode.training import SimCLR
from neurocode.datautil import manifold_plot, history_plot
sample_data = SimulatedDataset("sample", seed=7815891891337)
sample_data.read_from_file("MEG/sample/sample_audvis_raw.fif")
# create random extrapolated data from the raw MEG recording,
# you need to provide a location to a forward solution (source space) to use
sample_data.simulate("MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif")
dataset = RecordingDataset(sample_data.data(), sample_data.labels(), sfreq=200)
train, valid = dataset.train_valid_split(split=0.75)
samplers = {
'train': SignalSampler(train.data(), train.labels(), train.info(), ...),
'valid': SignalSampler(valid.data(), valid.labels(), valid.info(), ...),
}
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SignalNet(...)
optimizer = torch.optim.Adam(model.parameters(), ...)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, ...)
criterion = losses.NTXentLoss()
# train the neural network using the self-supervised learning SimCLR framework,
# save or plot the history to see training loss evolution
simclr = SimCLR(model, device, ...)
history = simclr.fit(samplers, save_model=True)
📋 License
All code is to be held under a general MIT license, please see LICENSE for specific information.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
neurocode-1.0.0.tar.gz
(27.7 kB
view details)
Built Distribution
neurocode-1.0.0-py3-none-any.whl
(53.1 kB
view details)
File details
Details for the file neurocode-1.0.0.tar.gz
.
File metadata
- Download URL: neurocode-1.0.0.tar.gz
- Upload date:
- Size: 27.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.11.0 Linux/6.2.0-1016-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e746837720a48169db9ffa3429f1c82108c60c988fa1e140fb9078e97d9b961b |
|
MD5 | 24772f71bedbc4d014f0589400c4db72 |
|
BLAKE2b-256 | 250a58c4e297150550bd1f59a901a83a4296f761b7180294ec5795b77786cd63 |
File details
Details for the file neurocode-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: neurocode-1.0.0-py3-none-any.whl
- Upload date:
- Size: 53.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.11.0 Linux/6.2.0-1016-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 66d256484e44d8ace1f652c1a83c8532ce48f94f2614a23f046b4d2bcd637aaa |
|
MD5 | df9437d5efcf31754f4b17ac47ea0e57 |
|
BLAKE2b-256 | e5b4b03c81b8cc0a3244cfa3b4ddad976c28f1e184e42bc496a57b63ca54a6c6 |