Skip to main content

A Python Toolbox for Statistics and Signal Processing (EEG, EDA, ECG, EMG...).

Project description

<p align="center"><a href=http://neurokit.readthedocs.io/><img src="https://github.com/neuropsychology/NeuroKit.py/blob/master/docs/img/neurokit.png" width="400" align="center" alt="neurokit python eeg biosignals meg electrophysiology logo"></a></p>

<h2 align="center">Neuroscience made easy!</h2>


# NeuroKit.py
[![pypi](https://img.shields.io/pypi/pyversions/neurokit.svg)](https://pypi.python.org/pypi/neurokit)
[![Codacy Badge](https://api.codacy.com/project/badge/Grade/d5248bd8c8574e90b5c8fe0bf2030201)](https://www.codacy.com/app/DominiqueMakowski/NeuroKit.py?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=neuropsychology/NeuroKit.py&amp;utm_campaign=Badge_Grade)
[![pypi](https://img.shields.io/pypi/v/neurokit.svg)](https://pypi.python.org/pypi/neurokit)
[![travis](https://travis-ci.org/neuropsychology/NeuroKit.py.svg?branch=master)](https://travis-ci.org/neuropsychology/NeuroKit.py)
[![codecov](https://codecov.io/gh/neuropsychology/NeuroKit.py/branch/master/graph/badge.svg)](https://codecov.io/gh/neuropsychology/NeuroKit.py)
[![Dependency Status](https://dependencyci.com/github/neuropsychology/NeuroKit.py/badge)](https://dependencyci.com/github/neuropsychology/NeuroKit.py)
[![License](https://img.shields.io/pypi/l/neurokit.svg)](https://github.com/neuropsychology/NeuroKit.py/blob/master/LICENSE)
[![Build status](https://ci.appveyor.com/api/projects/status/9w4qw55143xu1gei?svg=true)](https://ci.appveyor.com/project/DominiqueMakowski/neurokit-py)
[![Code Health](https://landscape.io/github/neuropsychology/NeuroKit.py/master/landscape.svg?style=flat)](https://landscape.io/github/neuropsychology/NeuroKit.py/master)


A Python Toolbox for Statistics and Neurophysiological Signal Processing (EEG, EDA, ECG, EMG...).



|Name|NeuroKit|
|----------------|---|
|Documentation|[![Documentation Status](https://readthedocs.org/projects/neurokit/badge/?version=latest)](http://neurokit.readthedocs.io/en/latest/?badge=latest)|
|Discussion|[![Join the chat at https://gitter.im/NeuroKit-py/Lobby](https://img.shields.io/gitter/room/neuropsychology/NeuroKit.py.js.svg)](https://gitter.im/NeuroKit-py/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)|
|Questions|[![](https://img.shields.io/badge/issue-create-purple.svg?colorB=FF9800)](https://github.com/neuropsychology/NeuroKit.py/issues)|
|Authors|[![](https://img.shields.io/badge/CV-D._Makowski-purple.svg?colorB=9C27B0)](https://dominiquemakowski.github.io/)|

---


## Installation

Run the following:

```bash
pip install https://github.com/neuropsychology/NeuroKit.py/zipball/master
```

Not working? [Check this out](http://neurokit.readthedocs.io/en/latest/tutorials/Python.html)!


## Contribute

Want to get involved in the developpment of an open-source software and improve neuroscience practice? **Join us!**

- You need some help? You found a bug? You would like to request a new feature?
Just open an [issue](https://github.com/neuropsychology/NeuroKit.py/issues) :relaxed:
- Want to add a feature? Correct a bug? You're more than welcome to contribute!
Check [this page](https://github.com/neuropsychology/NeuroKit.py/blob/master/CONTRIBUTING.md) to see how to submit your changes on github.

## Documentation

- [Tutorials](http://neurokit.readthedocs.io/en/latest/tutorials/index.html)
- [x] Biosignals processing
- [ ] M/EEG processing
- [API Documentation](http://neurokit.readthedocs.io/en/latest/documentation.html)


## Features

This package provides a high level integration of complex statistical routines for researchers and clinicians with not much experience in programming, statistics or signal theory.

- **[M/EEG](http://neurokit.readthedocs.io/en/latest/tutorials/EEG.html)** *(under developpment)*
- **[`eeg_erp()`](http://neurokit.readthedocs.io/en/latest/documentation.html#eeg_erp)**: Extract event-related potentials
- **[`eeg_complexity()`](http://neurokit.readthedocs.io/en/latest/documentation.html#eeg_complexity)**: Compute entropy, fractal dimension, and complexity indices
- Time/Frequency: **SOONâ„¢**
- Microstates: **SOONâ„¢**
- **[Biosignals](http://neurokit.readthedocs.io/en/latest/tutorials/Bio.html)**
- **[`read_acqknowledge()`](http://neurokit.readthedocs.io/en/latest/documentation.html#read-acqknowledge)**: Load and convert Biopac:copyright:'s AcqKnowledge files to a dataframe
- **[`ecg_process()`](http://neurokit.readthedocs.io/en/latest/documentation.html#ecg-process)**: Extract ECG features
- *Heart Rate*
- *Heart rate variability (HRV) - time, frequency and nonlinear domains*
- *Cardiac Cycles - R peaks, RR intervals, P, Q, T Waves, ...*
- *Cardiac Phase (systole/diastole)*
- *Signal quality evaluation*
- *Respiratory sinus arrhythmia (RSA) - P2T method*
- *Complexity (multiscale entropy, fractal dimensions, ...)*
- **[`rsp_process()`](http://neurokit.readthedocs.io/en/latest/documentation.html#ecg-process)**: Extract Respiratory features
- *Respiratory rate and variability*
- *Respiratory phase (inspiration/expiration)*
- *Respiratory cycles characteristics (onsets, length, ...)*
- **[`eda_process()`](http://neurokit.readthedocs.io/en/latest/documentation.html#eda-process)**: Extract Electrodermal Activity (EDA)
- *Tonic and phasic components using the new cvxEDA algorithm ([Greco, 2016](https://www.ncbi.nlm.nih.gov/pubmed/26336110))*
- *Skin Conductance Responses (SCR) onsets, peaks, amplitudes, latencies, recovery times, ...*
- **[`emg_process()`](http://neurokit.readthedocs.io/en/latest/documentation.html#emg-process)**: Extract EMG features
- *Pulse onsets*
- *Linear envelope, muscle activation*
- **Signal**
- **[`complexity()`](http://neurokit.readthedocs.io/en/latest/documentation.html#complexity)**: Extract complexity/chaos indices, such as values of entropy (Shannon's, Sample and Multiscale), fractal dimension, Hurst and Lyapunov exponents and more
- **Statistics**
- **[`z_score()`](http://neurokit.readthedocs.io/en/latest/documentation.html#z-score)**: Normalize (scale and reduce) variables
- **[`find_outliers()`](http://neurokit.readthedocs.io/en/latest/documentation.html#find_outliers)**: Identify outliers
- **Miscellaneous**
- **[`compute_dprime()`](http://neurokit.readthedocs.io/en/latest/documentation.html#compute_dprime)**: Computes Signal Detection Theory (SDT) parameters (d', c, beta, a', b''d)
- **[`compute_BMI()`](http://neurokit.readthedocs.io/en/latest/documentation.html#compute_bmi)**: Compute the traditional body mass index (BMI), the new BMI, the Body Fat Percentage (BFP) and their interpretation
- **[`compute_interoceptive_accuracy()`](http://neurokit.readthedocs.io/en/latest/documentation.html#compute_interoceptive_accuracy)**: Compute interoception accuracy according to Garfinkel et al., (2015).


## Citation
You can cite NeuroKit with the following:
```
Makowski, D. (2016). NeuroKit: A Python Toolbox for Statistics and Neurophysiological Signal Processing (EEG, EDA, ECG, EMG...).
Memory and Cognition Lab' Day, 01 November, Paris, France
```
*Note: The authors do not give any warranty. If this software causes your keyboard to blow up, your brain to liquefy, your toilet to clog or a zombie plague to leak, the authors CANNOT IN ANY WAY be held responsible.*

## Credits
Note that important credits go to the developpers of the many packages upon which NeuroKit is built. Those include [mne](http://mne-tools.github.io/stable/index.html), [bioSPPy](https://github.com/PIA-Group/BioSPPy), [hrv](https://github.com/rhenanbartels/hrv), [bioread](https://github.com/njvack/bioread)... Make sure you cite them!


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neurokit-0.2.0.tar.gz (704.6 kB view details)

Uploaded Source

Built Distribution

neurokit-0.2.0-py3-none-any.whl (720.8 kB view details)

Uploaded Python 3

File details

Details for the file neurokit-0.2.0.tar.gz.

File metadata

  • Download URL: neurokit-0.2.0.tar.gz
  • Upload date:
  • Size: 704.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for neurokit-0.2.0.tar.gz
Algorithm Hash digest
SHA256 21da328e06d219aefca664180fbc30e528bc56f84a8687ee9b2e12a7162b8eeb
MD5 ea267b86bf9a9a8877eda4c4e6558d13
BLAKE2b-256 aae4aac4c53fb12d52c292988897bff3d003a5798ec582b267f57057bfdf6c31

See more details on using hashes here.

File details

Details for the file neurokit-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for neurokit-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3861e0ac0d7b77e05c7c1f5bdd68e83f519eb841b78b90c832b08d770f87e330
MD5 c482bd735cab2285bd4fda38399a44d7
BLAKE2b-256 6d9e09f441055856cfe1ddc3251d2709671eea3d8fc10233fd1ee1ee35124fe0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page