Skip to main content

NeuroQRS (Neuro Query Recommendation System) is Faiss + LLM based query recommender with auto-improvement using closed feedback loop

Project description

NeuroQRS

NeuroQRS (Neuro Query Recommendation System) is Faiss + LLM based query recommender with auto-improvement using closed feedback loop!

It works by first using faiss to check for any similar previous search, if not then it builds one using genai! XD

Installation

[Coming Soon] Install the neuroqrs package with pip:

$ pip install neuroqrs

Or install the latest package directly from github

$ pip install git+https://github.com/searchX/neuroqrs

Example Usage

from neuroqrs.main import NeuroQRS
neuroqrs = NeuroQRS()
async def main():
    ... statements
import asyncio
asyncio.run(main())
  1. Force fetch documents from chatgpt api (index + search mode)
print(await neuroqrs.query_and_index("nike casual ", "nike", {}, {}))
# Output: ['nike casual black', 'nike casual men', 'nike casual white', 'nike casual wear', 'nike casual shoes']
  1. Only do quick query without reindexing/genai
print(await neuroqrs.quick_query("nike casual ", "nike"))
# Output: ['nike casual black', 'nike casual men', 'nike casual white', 'nike casual wear', 'nike casual shoes']
  1. Try quick query, if data not avaliable then index and get results (combines above two)
print(await neuroqrs.query_maybe_index("nike casual ", "nike", {}, {}))
# Output: ['nike casual black', 'nike casual men', 'nike casual white', 'nike casual wear', 'nike casual shoes']

Please look into official docs for more information - https://searchx.github.io/neuroqrs/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

neuroqrs-0.1.4.tar.gz (5.1 kB view details)

Uploaded Source

Built Distribution

neuroqrs-0.1.4-py3-none-any.whl (6.0 kB view details)

Uploaded Python 3

File details

Details for the file neuroqrs-0.1.4.tar.gz.

File metadata

  • Download URL: neuroqrs-0.1.4.tar.gz
  • Upload date:
  • Size: 5.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.12.2 CPython/3.10.12

File hashes

Hashes for neuroqrs-0.1.4.tar.gz
Algorithm Hash digest
SHA256 56aa960c534d1cd6544cb720fb2b935614ff8f48a451115d909d2d8e0099b60b
MD5 5ce9d5a93085a41fd73abbe2bbbf0762
BLAKE2b-256 a7fe2304de104beefb99e0638c7f34ffbaa54ceb5fa3eb2f23ff5cef98bc7714

See more details on using hashes here.

Provenance

File details

Details for the file neuroqrs-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: neuroqrs-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 6.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.12.2 CPython/3.10.12

File hashes

Hashes for neuroqrs-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 9e871d519c0e1c020d9a696556f947c5b85bd1186afe2e868047272448f82326
MD5 04bb0936c299db73b9058ba26c0dc0e0
BLAKE2b-256 3ad796aec8f9dd1117086f0afcb3102e356b011b6dd235c06a6ae5d48bbd1b1c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page