Face Recognition Tools
Project description
new_face
new_face repository includes face detection, face landmark, face alignment, and face recognition technique.
Necessary softwares
Installation
pip install -r requirements
or
pip install new_face
or
conda env create -f new_face36.yaml -n new_face36
conda env create -f new_face37.yaml -n new_face37
conda env create -f new_face38.yaml -n new_face38
conda env create -f new_face39.yaml -n new_face39
Methods List
Face Detection | Face Landmark | Face Alignment | Face Recognition |
---|---|---|---|
haar_detect | dlib_5_points | mtcnn_alignment | LBPH |
dlib_detect | dlib_68_points | dlib_alignment | OpenFace |
ssd_dnn_detect | × | × | LBPCNN |
mtcnn_detect | × | × | × |
Face Detection
import logging
import cv2
import imutils
from new_face import FaceDetection
FORMAT = '%(asctime)s [%(levelname)s] %(message)s'
DATE_FORMAT = '%Y-%m-%d %H:%M:%S'
logging.basicConfig(level=logging.INFO, format=FORMAT, datefmt=DATE_FORMAT)
image = cv2.imread("images/people.jpg")
resize_image = imutils.resize(image, width=1280)
face_detect = FaceDetection()
mtcnn = face_detect.load_detector(face_detect.MTCNN)
rois, raw_image, face_images = face_detect.mtcnn_detect(mtcnn,
resize_image,
conf_threshold=0.5,
vision=True,
save_path="images/mtcnn.jpg")
Face Landmark
import logging
import cv2
import imutils
from new_face import FaceLandmark
FORMAT = '%(asctime)s [%(levelname)s] %(message)s'
DATE_FORMAT = '%Y-%m-%d %H:%M:%S'
logging.basicConfig(level=logging.INFO, format=FORMAT, datefmt=DATE_FORMAT)
image = cv2.imread("images/people-3.jpg")
resize_image = imutils.resize(image, width=1280)
shape_5_predictor = FaceLandmark.load_shape_predictor("shape_predictor_5_face_landmarks.dat")
# shape_68_predictor = FaceLandmark.load_shape_predictor("shape_predictor_68_face_landmarks.dat")
face_points = FaceLandmark.dlib_5_points(image=resize_image,
shape_predictor=shape_5_predictor,
vision=True,
save_path="images/dlib_5_points.jpg")
# face_points = FaceLandmark.dlib_68_points(image=resize_image,
# shape_predictor=shape_68_predictor,
# vision=True,
# save_path="images/dlib_68_points.jpg")
Face Alignment
import logging
import cv2
import imutils
from new_face import FaceAlignment
FORMAT = '%(asctime)s [%(levelname)s] %(message)s'
DATE_FORMAT = '%Y-%m-%d %H:%M:%S'
logging.basicConfig(level=logging.INFO, format=FORMAT, datefmt=DATE_FORMAT)
image = cv2.imread("images/people-2.jpg")
resize_image = imutils.resize(image, width=1280)
face_alignment = FaceAlignment()
mtcnn_detector = face_alignment.load_detector(face_alignment.MTCNN)
rois, raw_image, face_images = face_alignment.mtcnn_alignment(mtcnn_detector,
resize_image,
conf_threshold=0.9,
vision=True,
save_dir="images/align",
face_size=256)
Face Recognition
Dataset Structure
├─dataset
│ └─YaleB_align_256
│ ├─yaleB11
│ ├─yaleB12
│ ├─yaleB13
│ ├─yaleB15
.
.
.
Train and Predict Model
Train LBPH model
python train_lbph.py
Train OpenFace model
python train_openface.py
Train LBPCNN model
python train_lbpcnn.py
Predict by LBPH model
python predict_lbph.py
Predict by OpenFace model
python predict_openface.py
Predict by LBPCNN model
python predict_lbpcnn.py
Reference
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
new_face-0.0.4.6.tar.gz
(16.6 kB
view details)
Built Distribution
File details
Details for the file new_face-0.0.4.6.tar.gz
.
File metadata
- Download URL: new_face-0.0.4.6.tar.gz
- Upload date:
- Size: 16.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.26.0 setuptools/58.0.4 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4e71906598d8ff96cd81cdb7475e7d26456ad6e04c5b9b2cb5a4b92ef491a8c4 |
|
MD5 | 72d2e3b60a6f4c6a0d56a04ab3ca2ac3 |
|
BLAKE2b-256 | ee04da29aa84f7dcebf4f1a0b59f71599ba7ffd6449867155f0fcd21ee884445 |
File details
Details for the file new_face-0.0.4.6-py3-none-any.whl
.
File metadata
- Download URL: new_face-0.0.4.6-py3-none-any.whl
- Upload date:
- Size: 25.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.26.0 setuptools/58.0.4 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 24258f59a4a5232591b2efab6a655ce43cabaf0e2fb8372cffabe2da977b76e4 |
|
MD5 | 1630502de14af672210a1d8c246b9e09 |
|
BLAKE2b-256 | 5cfff9421a3a1f4f5ca36e4626b4fbb36f54deb87c652df6b0c30e7b494c63a7 |