Skip to main content

A high-throughput and memory-efficient inference and serving engine for LLMs

Project description

vLLM

Easy, fast, and cheap LLM serving for everyone

| Documentation | Blog | Paper | Discord |

Latest News 🔥

  • [2024/04] We hosted the third vLLM meetup with Roblox! Please find the meetup slides here.
  • [2024/01] We hosted the second vLLM meetup in SF! Please find the meetup slides here.
  • [2024/01] Added ROCm 6.0 support to vLLM.
  • [2023/12] Added ROCm 5.7 support to vLLM.
  • [2023/10] We hosted the first vLLM meetup in SF! Please find the meetup slides here.
  • [2023/09] We created our Discord server! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.
  • [2023/09] We released our PagedAttention paper on arXiv!
  • [2023/08] We would like to express our sincere gratitude to Andreessen Horowitz (a16z) for providing a generous grant to support the open-source development and research of vLLM.
  • [2023/07] Added support for LLaMA-2! You can run and serve 7B/13B/70B LLaMA-2s on vLLM with a single command!
  • [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click example to start the vLLM demo, and the blog post for the story behind vLLM development on the clouds.
  • [2023/06] We officially released vLLM! FastChat-vLLM integration has powered LMSYS Vicuna and Chatbot Arena since mid-April. Check out our blog post.

About

vLLM is a fast and easy-to-use library for LLM inference and serving.

vLLM is fast with:

  • State-of-the-art serving throughput
  • Efficient management of attention key and value memory with PagedAttention
  • Continuous batching of incoming requests
  • Fast model execution with CUDA/HIP graph
  • Quantization: GPTQ, AWQ, SqueezeLLM, FP8 KV Cache
  • Optimized CUDA kernels

vLLM is flexible and easy to use with:

  • Seamless integration with popular Hugging Face models
  • High-throughput serving with various decoding algorithms, including parallel sampling, beam search, and more
  • Tensor parallelism support for distributed inference
  • Streaming outputs
  • OpenAI-compatible API server
  • Support NVIDIA GPUs and AMD GPUs
  • (Experimental) Prefix caching support
  • (Experimental) Multi-lora support

vLLM seamlessly supports many Hugging Face models, including the following architectures:

  • Aquila & Aquila2 (BAAI/AquilaChat2-7B, BAAI/AquilaChat2-34B, BAAI/Aquila-7B, BAAI/AquilaChat-7B, etc.)
  • Baichuan & Baichuan2 (baichuan-inc/Baichuan2-13B-Chat, baichuan-inc/Baichuan-7B, etc.)
  • BLOOM (bigscience/bloom, bigscience/bloomz, etc.)
  • ChatGLM (THUDM/chatglm2-6b, THUDM/chatglm3-6b, etc.)
  • Command-R (CohereForAI/c4ai-command-r-v01, etc.)
  • DBRX (databricks/dbrx-base, databricks/dbrx-instruct etc.)
  • DeciLM (Deci/DeciLM-7B, Deci/DeciLM-7B-instruct, etc.)
  • Falcon (tiiuae/falcon-7b, tiiuae/falcon-40b, tiiuae/falcon-rw-7b, etc.)
  • Gemma (google/gemma-2b, google/gemma-7b, etc.)
  • GPT-2 (gpt2, gpt2-xl, etc.)
  • GPT BigCode (bigcode/starcoder, bigcode/gpt_bigcode-santacoder, etc.)
  • GPT-J (EleutherAI/gpt-j-6b, nomic-ai/gpt4all-j, etc.)
  • GPT-NeoX (EleutherAI/gpt-neox-20b, databricks/dolly-v2-12b, stabilityai/stablelm-tuned-alpha-7b, etc.)
  • InternLM (internlm/internlm-7b, internlm/internlm-chat-7b, etc.)
  • InternLM2 (internlm/internlm2-7b, internlm/internlm2-chat-7b, etc.)
  • Jais (core42/jais-13b, core42/jais-13b-chat, core42/jais-30b-v3, core42/jais-30b-chat-v3, etc.)
  • LLaMA & LLaMA-2 (meta-llama/Llama-2-70b-hf, lmsys/vicuna-13b-v1.3, young-geng/koala, openlm-research/open_llama_13b, etc.)
  • Mistral (mistralai/Mistral-7B-v0.1, mistralai/Mistral-7B-Instruct-v0.1, etc.)
  • Mixtral (mistralai/Mixtral-8x7B-v0.1, mistralai/Mixtral-8x7B-Instruct-v0.1, etc.)
  • MPT (mosaicml/mpt-7b, mosaicml/mpt-30b, etc.)
  • OLMo (allenai/OLMo-1B, allenai/OLMo-7B, etc.)
  • OPT (facebook/opt-66b, facebook/opt-iml-max-30b, etc.)
  • Orion (OrionStarAI/Orion-14B-Base, OrionStarAI/Orion-14B-Chat, etc.)
  • Phi (microsoft/phi-1_5, microsoft/phi-2, etc.)
  • Qwen (Qwen/Qwen-7B, Qwen/Qwen-7B-Chat, etc.)
  • Qwen2 (Qwen/Qwen1.5-7B, Qwen/Qwen1.5-7B-Chat, etc.)
  • Qwen2MoE (Qwen/Qwen1.5-MoE-A2.7B, Qwen/Qwen1.5-MoE-A2.7B-Chat, etc.)
  • StableLM(stabilityai/stablelm-3b-4e1t, stabilityai/stablelm-base-alpha-7b-v2, etc.)
  • Starcoder2(bigcode/starcoder2-3b, bigcode/starcoder2-7b, bigcode/starcoder2-15b, etc.)
  • Xverse (xverse/XVERSE-7B-Chat, xverse/XVERSE-13B-Chat, xverse/XVERSE-65B-Chat, etc.)
  • Yi (01-ai/Yi-6B, 01-ai/Yi-34B, etc.)

Install vLLM with pip or from source:

pip install vllm

Getting Started

Visit our documentation to get started.

Contributing

We welcome and value any contributions and collaborations. Please check out CONTRIBUTING.md for how to get involved.

Citation

If you use vLLM for your research, please cite our paper:

@inproceedings{kwon2023efficient,
  title={Efficient Memory Management for Large Language Model Serving with PagedAttention},
  author={Woosuk Kwon and Zhuohan Li and Siyuan Zhuang and Ying Sheng and Lianmin Zheng and Cody Hao Yu and Joseph E. Gonzalez and Hao Zhang and Ion Stoica},
  booktitle={Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles},
  year={2023}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nextai_vllm-0.0.7-cp310-cp310-manylinux1_x86_64.whl (97.7 MB view details)

Uploaded CPython 3.10

nextai_vllm-0.0.7-cp39-cp39-manylinux1_x86_64.whl (97.7 MB view details)

Uploaded CPython 3.9

File details

Details for the file nextai_vllm-0.0.7-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for nextai_vllm-0.0.7-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d35b1154872fd045bc8b7a5d550384953ae5d9d38b94d5927c3626c31df97b51
MD5 d1562b5052c68e0b20e681b740345a40
BLAKE2b-256 a083c3a667763d02e9e771a471c277f24d92ae35302592705cbc265427aa748e

See more details on using hashes here.

File details

Details for the file nextai_vllm-0.0.7-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for nextai_vllm-0.0.7-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c4df68dbfee944f98384bc437db287c47b8962d9251119b6d2fc55162e06ffe7
MD5 bdcb5d91a6e431cbc2235f77ae885483
BLAKE2b-256 a50eadf3ff2a258bb79bfdd0e9a6fabcd058a35e2a6b630bbd84589f839b7d6c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page