Skip to main content

Implementation of N4SID, Kalman filtering and state-space models

Project description

NFourSID

Implementation of the N4SID algorithm for subspace identification [1], together with Kalman filtering and state-space models.

State-space models are versatile models for representing multi-dimensional timeseries. As an example, the ARMAX(p, q)-models - AutoRegressive MovingAverage with eXogenous input - are included in the representation of state-space models. By extension, ARMA-, AR- and MA-models can be described, too. The numerical implementations are based on [2].

Installation

Releases are made available on PyPi. The recommended installation method is via pip:

pip install nfoursid

For a development setup, the requirements are in dev-requirements.txt. Subsequently, this repo can be locally pip-installed.

Documentation and code example

Documentation is provided here. An example Jupyter notebook is provided here.

References

  1. Van Overschee, Peter, and Bart De Moor. "N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems." Automatica 30.1 (1994): 75-93.
  2. Verhaegen, Michel, and Vincent Verdult. Filtering and system identification: a least squares approach. Cambridge university press, 2007.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

nfoursid-0.0.2-py3-none-any.whl (12.9 kB view details)

Uploaded Python 3

File details

Details for the file nfoursid-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: nfoursid-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 12.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for nfoursid-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 42515730e5ba489cb06ad4a73c54df67a401d4fff9d3fc0a15669fc8d7d62b12
MD5 42052b2513400e6d34fa8d0cf0d49506
BLAKE2b-256 81d741e71eebbe9756107d9ee4c5723233ce6d3532ed61196d6431f5af3c643e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page