Skip to main content

A Flexible Network Data Analysis Framework

Project description

NFStream Logo


NFStream is a multiplatform Python framework providing fast, flexible, and expressive data structures designed to make working with online or offline network data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world network data analysis in Python. Additionally, it has the broader goal of becoming a common network data analytics framework for researchers providing data reproducibility across experiments.

Live Notebook live notebook
Project Website website
Discussion Channel Gitter
Latest Release latest release
Supported Versions python3 pypy3
Project License License
Continuous Integration Linux WorkFlows MacOS WorkFlows Windows WorkFlows ARM64 WorkFlows ARM32 WorkFlows
Code Quality Quality Quality
Code Coverage Coverage Fuzzing

Table of Contents

Main Features

  • Performance: NFStream is designed to be fast: AF_PACKETV3/FANOUT on Linux, parallel processing, native C (using CFFI) for critical computation and PyPy support.
  • Encrypted layer-7 visibility: NFStream deep packet inspection is based on nDPI. It allows NFStream to perform reliable encrypted applications identification and metadata fingerprinting (e.g. TLS, SSH, DHCP, HTTP).
  • System visibility: NFStream probes the monitored system's kernel to obtain information on open Internet sockets and collects guaranteed ground-truth (process name, PID, etc.) at the application level.
  • Statistical features extraction: NFStream provides state of the art of flow-based statistical feature extraction. It includes both post-mortem statistical features (e.g. min, mean, stddev and max of packet size and inter arrival time) and early flow features (e.g. sequence of first n packets sizes, inter arrival times and directions).
  • Flexibility: NFStream is easily extensible using NFPlugins. It allows to create a new feature within a few lines of Python.
  • Machine Learning oriented: NFStream aims to make Machine Learning Approaches for network traffic management reproducible and deployable. By using NFStream as a common framework, researchers ensure that models are trained using the same feature computation logic and thus, a fair comparison is possible. Moreover, trained models can be deployed and evaluated on live network using NFPlugins.

How to get it?

Binary installers for the latest released version are available on Pypi.

pip install nfstream

Windows Notes: NFStream does not include capture drivers on Windows. It is required to install Npcap drivers before installing NFStream. If Wireshark is already installed on Windows, then Npcap drivers are already installed.

How to use it?

Encrypted application identification and metadata extraction

Dealing with a big pcap file and just want to aggregate into labeled network flows? NFStream make this path easier in few lines:

from nfstream import NFStreamer
# We display all streamer parameters with their default values.
# See documentation for detailed information about each parameter.
# https://www.nfstream.org/docs/api#nfstreamer
my_streamer = NFStreamer(source="facebook.pcap", # or network interface
                         decode_tunnels=True,
                         bpf_filter=None,
                         promiscuous_mode=True,
                         snapshot_length=1536,
                         idle_timeout=120,
                         active_timeout=1800,
                         accounting_mode=0,
                         udps=None,
                         n_dissections=20,
                         statistical_analysis=False,
                         splt_analysis=0,
                         n_meters=0,
                         max_nflows=0,
                         performance_report=0,
                         system_visibility_mode=0,
                         system_visibility_poll_ms=100)
                         
for flow in my_streamer:
    print(flow)  # print it.
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=52066,
      dst_ip='66.220.156.68',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1472393122365,
      bidirectional_last_seen_ms=1472393123665,
      bidirectional_duration_ms=1300,
      bidirectional_packets=19,
      bidirectional_bytes=5745,
      src2dst_first_seen_ms=1472393122365,
      src2dst_last_seen_ms=1472393123408,
      src2dst_duration_ms=1043,
      src2dst_packets=9,
      src2dst_bytes=1345,
      dst2src_first_seen_ms=1472393122668,
      dst2src_last_seen_ms=1472393123665,
      dst2src_duration_ms=997,
      dst2src_packets=10,
      dst2src_bytes=4400,
      application_name='TLS.Facebook',
      application_category_name='SocialNetwork',
      application_is_guessed=0,
      application_confidence=4,
      requested_server_name='facebook.com',
      client_fingerprint='bfcc1a3891601edb4f137ab7ab25b840',
      server_fingerprint='2d1eb5817ece335c24904f516ad5da12',
      user_agent='',
      content_type='')

System visibility

NFStream probes the monitored system's kernel to obtain information on open Internet sockets and collects guaranteed ground-truth (process name, PID, etc.) at the application level.

from nfstream import NFStreamer
my_streamer = NFStreamer(source="Intel(R) Wi-Fi 6 AX200 160MHz", # Live capture mode. 
                         # Disable L7 dissection for readability purpose only.
                         n_dissections=0,
                         system_visibility_poll_ms=100,
                         system_visibility_mode=1)
                         
for flow in my_streamer:
    print(flow)  # print it.
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=59339,
      dst_ip='184.73.244.37',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1638966705265,
      bidirectional_last_seen_ms=1638966706999,
      bidirectional_duration_ms=1734,
      bidirectional_packets=98,
      bidirectional_bytes=424464,
      src2dst_first_seen_ms=1638966705265,
      src2dst_last_seen_ms=1638966706999,
      src2dst_duration_ms=1734,
      src2dst_packets=22,
      src2dst_bytes=2478,
      dst2src_first_seen_ms=1638966705345,
      dst2src_last_seen_ms=1638966706999,
      dst2src_duration_ms=1654,
      dst2src_packets=76,
      dst2src_bytes=421986,
      # The process that generated this reported flow. 
      system_process_pid=14596,
      system_process_name='FortniteClient-Win64-Shipping.exe')

Post-mortem statistical flow features extraction

NFStream performs 48 post mortem flow statistical features extraction which include detailed TCP flags analysis, minimum, mean, maximum and standard deviation of both packet size and interarrival time in each direction.

from nfstream import NFStreamer
my_streamer = NFStreamer(source="facebook.pcap",
                         # Disable L7 dissection for readability purpose.
                         n_dissections=0,  
                         statistical_analysis=True)
for flow in my_streamer:
    print(flow)
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=52066,
      dst_ip='66.220.156.68',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1472393122365,
      bidirectional_last_seen_ms=1472393123665,
      bidirectional_duration_ms=1300,
      bidirectional_packets=19,
      bidirectional_bytes=5745,
      src2dst_first_seen_ms=1472393122365,
      src2dst_last_seen_ms=1472393123408,
      src2dst_duration_ms=1043,
      src2dst_packets=9,
      src2dst_bytes=1345,
      dst2src_first_seen_ms=1472393122668,
      dst2src_last_seen_ms=1472393123665,
      dst2src_duration_ms=997,
      dst2src_packets=10,
      dst2src_bytes=4400,
      bidirectional_min_ps=66,
      bidirectional_mean_ps=302.36842105263156,
      bidirectional_stddev_ps=425.53315715259754,
      bidirectional_max_ps=1454,
      src2dst_min_ps=66,
      src2dst_mean_ps=149.44444444444446,
      src2dst_stddev_ps=132.20354676701294,
      src2dst_max_ps=449,
      dst2src_min_ps=66,
      dst2src_mean_ps=440.0,
      dst2src_stddev_ps=549.7164925870628,
      dst2src_max_ps=1454,
      bidirectional_min_piat_ms=0,
      bidirectional_mean_piat_ms=72.22222222222223,
      bidirectional_stddev_piat_ms=137.34994188549086,
      bidirectional_max_piat_ms=398,
      src2dst_min_piat_ms=0,
      src2dst_mean_piat_ms=130.375,
      src2dst_stddev_piat_ms=179.72036811192467,
      src2dst_max_piat_ms=415,
      dst2src_min_piat_ms=0,
      dst2src_mean_piat_ms=110.77777777777777,
      dst2src_stddev_piat_ms=169.51458475436397,
      dst2src_max_piat_ms=409,
      bidirectional_syn_packets=2,
      bidirectional_cwr_packets=0,
      bidirectional_ece_packets=0,
      bidirectional_urg_packets=0,
      bidirectional_ack_packets=18,
      bidirectional_psh_packets=9,
      bidirectional_rst_packets=0,
      bidirectional_fin_packets=0,
      src2dst_syn_packets=1,
      src2dst_cwr_packets=0,
      src2dst_ece_packets=0,
      src2dst_urg_packets=0,
      src2dst_ack_packets=8,
      src2dst_psh_packets=4,
      src2dst_rst_packets=0,
      src2dst_fin_packets=0,
      dst2src_syn_packets=1,
      dst2src_cwr_packets=0,
      dst2src_ece_packets=0,
      dst2src_urg_packets=0,
      dst2src_ack_packets=10,
      dst2src_psh_packets=5,
      dst2src_rst_packets=0,
      dst2src_fin_packets=0)

Early statistical flow features extraction

NFStream performs early (up to 255 packets) flow statistical features extraction (also referred as SPLT analysis in the literature). It is summarized as a sequence a these packets directions, sizes and interarrival times.

from nfstream import NFStreamer
my_streamer = NFStreamer(source="facebook.pcap",
                         # We disable l7 dissection for readability purpose.
                         n_dissections=0,
                         splt_analysis=10)
for flow in my_streamer:
    print(flow)
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=52066,
      dst_ip='66.220.156.68',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1472393122365,
      bidirectional_last_seen_ms=1472393123665,
      bidirectional_duration_ms=1300,
      bidirectional_packets=19,
      bidirectional_bytes=5745,
      src2dst_first_seen_ms=1472393122365,
      src2dst_last_seen_ms=1472393123408,
      src2dst_duration_ms=1043,
      src2dst_packets=9,
      src2dst_bytes=1345,
      dst2src_first_seen_ms=1472393122668,
      dst2src_last_seen_ms=1472393123665,
      dst2src_duration_ms=997,
      dst2src_packets=10,
      dst2src_bytes=4400,
      # The sequence of 10 first packet direction, size and inter arrival time.
      splt_direction=[0, 1, 0, 0, 1, 1, 0, 1, 0, 1],
      splt_ps=[74, 74, 66, 262, 66, 1454, 66, 1454, 66, 463],
      splt_piat_ms=[0, 303, 0, 0, 313, 0, 0, 0, 0, 1])

Pandas export interface

NFStream natively supports Pandas as export interface.

# See documentation for more details.
# https://www.nfstream.org/docs/api#pandas-dataframe-conversion
from nfstream import NFStreamer
my_dataframe = NFStreamer(source='teams.pcap').to_pandas()[["src_ip",
                                                            "src_port",
                                                            "dst_ip", 
                                                            "dst_port", 
                                                            "protocol",
                                                            "bidirectional_packets",
                                                            "bidirectional_bytes",
                                                            "application_name"]]
my_dataframe.head(5)

Pandas

CSV export interface

NFStream natively supports CSV file format as export interface.

# See documentation for more details.
# https://www.nfstream.org/docs/api#csv-file-conversion
flows_count = NFStreamer(source='facebook.pcap').to_csv(path=None,
                                                        columns_to_anonymize=(),
                                                        flows_per_file=0,
                                                        rotate_files=0)

Extending NFStream

Didn't find a specific flow feature? add a plugin to NFStream in few lines:

from nfstream import NFPlugin
    
class MyCustomFeature(NFPlugin):
    def on_init(self, packet, flow):
        # flow creation with the first packet
        if packet.raw_size == self.custom_size:
            flow.udps.packet_with_custom_size = 1
        else:
            flow.udps.packet_with_custom_size = 0
	
    def on_update(self, packet, flow):
        # flow update with each packet belonging to the flow 
        if packet.raw_size == self.custom_size:
            flow.udps.packet_with_custom_size += 1


extended_streamer = NFStreamer(source='facebook.pcap', 
                               udps=MyCustomFeature(custom_size=555))

for flow in extended_streamer:
    # see your dynamically created metric in generated flows
    print(flow.udps.packet_with_custom_size) 

Machine Learning models training and deployment

In the following example, we demonstrate a simplistic machine learning approach training and deployment. We suppose that we want to run a classification of Social Network category flows based on bidirectional_packets and bidirectional_bytes as features. For the sake of brevity, we decide to predict only at flow expiration stage.

Training the model

from nfstream import NFPlugin, NFStreamer
import numpy
from sklearn.ensemble import RandomForestClassifier

df = NFStreamer(source="training_traffic.pcap").to_pandas()
X = df[["bidirectional_packets", "bidirectional_bytes"]]
y = df["application_category_name"].apply(lambda x: 1 if 'SocialNetwork' in x else 0)
model = RandomForestClassifier()
model.fit(X, y)

ML powered streamer on live traffic

class ModelPrediction(NFPlugin):
    def on_init(self, packet, flow):
        flow.udps.model_prediction = 0
    def on_expire(self, flow):
        # You can do the same in on_update entrypoint and force expiration with custom id. 
        to_predict = numpy.array([flow.bidirectional_packets,
                                  flow.bidirectional_bytes]).reshape((1,-1))
        flow.udps.model_prediction = self.my_model.predict(to_predict)

ml_streamer = NFStreamer(source="eth0", udps=ModelPrediction(my_model=model))
for flow in ml_streamer:
    print(flow.udps.model_prediction)

More NFPlugin examples and details are provided on the official documentation. You can also test NFStream without installation using our live demo notebook.

Building from sources l m w

If you want to build NFStream from sources. Please read the installation guide.

Contributing

Please read Contributing for details on our code of conduct, and the process for submitting pull requests to us.

Ethics

NFStream is intended for network data research and forensics. Researchers and network data scientists can use these framework to build reliable datasets, train and evaluate network applied machine learning models. As with any packet monitoring tool, NFStream could potentially be misused. Do not run it on any network of which you are not the owner or the administrator.

Credits

Citation

NFStream paper is published in Computer Networks (COMNET). If you use NFStream in a scientific publication, we would appreciate citations to the following paper:

@article{AOUINI2022108719,
  title = {NFStream: A flexible network data analysis framework},
  author = {Aouini, Zied and Pekar, Adrian},
  doi = {10.1016/j.comnet.2021.108719},
  issn = {1389-1286},
  journal = {Computer Networks},
  pages = {108719},
  year = {2022},
  publisher = {Elsevier},
  volume = {204},
  url = {https://www.sciencedirect.com/science/article/pii/S1389128621005739}
}

Authors

The following people contributed to NFStream:

Supporting organizations

The following organizations are supporting NFStream:

sah tuke ntop nmap

Publications that use NFStream

License

This project is licensed under the LGPLv3 License - see the License file for details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nfstream-6.5.3-pp39-pypy39_pp73-win_amd64.whl (739.2 kB view details)

Uploaded PyPy Windows x86-64

nfstream-6.5.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nfstream-6.5.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

nfstream-6.5.3-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (729.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nfstream-6.5.3-pp38-pypy38_pp73-win_amd64.whl (739.2 kB view details)

Uploaded PyPy Windows x86-64

nfstream-6.5.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nfstream-6.5.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

nfstream-6.5.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (729.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nfstream-6.5.3-pp37-pypy37_pp73-win_amd64.whl (739.2 kB view details)

Uploaded PyPy Windows x86-64

nfstream-6.5.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nfstream-6.5.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

nfstream-6.5.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (729.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nfstream-6.5.3-cp311-cp311-win_amd64.whl (743.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

nfstream-6.5.3-cp311-cp311-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

nfstream-6.5.3-cp311-cp311-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

nfstream-6.5.3-cp311-cp311-musllinux_1_1_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

nfstream-6.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nfstream-6.5.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

nfstream-6.5.3-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.3-cp311-cp311-macosx_11_0_arm64.whl (103.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

nfstream-6.5.3-cp311-cp311-macosx_10_9_x86_64.whl (747.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

nfstream-6.5.3-cp310-cp310-win_amd64.whl (743.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

nfstream-6.5.3-cp310-cp310-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

nfstream-6.5.3-cp310-cp310-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

nfstream-6.5.3-cp310-cp310-musllinux_1_1_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

nfstream-6.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nfstream-6.5.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

nfstream-6.5.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.3-cp310-cp310-macosx_11_0_arm64.whl (103.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

nfstream-6.5.3-cp310-cp310-macosx_10_9_x86_64.whl (747.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

nfstream-6.5.3-cp39-cp39-win_amd64.whl (743.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

nfstream-6.5.3-cp39-cp39-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

nfstream-6.5.3-cp39-cp39-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

nfstream-6.5.3-cp39-cp39-musllinux_1_1_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

nfstream-6.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nfstream-6.5.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

nfstream-6.5.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.3-cp39-cp39-macosx_11_0_arm64.whl (103.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

nfstream-6.5.3-cp39-cp39-macosx_10_9_x86_64.whl (747.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nfstream-6.5.3-cp38-cp38-win_amd64.whl (743.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

nfstream-6.5.3-cp38-cp38-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

nfstream-6.5.3-cp38-cp38-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

nfstream-6.5.3-cp38-cp38-musllinux_1_1_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

nfstream-6.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nfstream-6.5.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

nfstream-6.5.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.3-cp38-cp38-macosx_11_0_arm64.whl (103.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

nfstream-6.5.3-cp38-cp38-macosx_10_9_x86_64.whl (747.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

nfstream-6.5.3-cp37-cp37m-win_amd64.whl (743.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

nfstream-6.5.3-cp37-cp37m-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

nfstream-6.5.3-cp37-cp37m-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

nfstream-6.5.3-cp37-cp37m-musllinux_1_1_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

nfstream-6.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nfstream-6.5.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

nfstream-6.5.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.3-cp37-cp37m-macosx_10_9_x86_64.whl (747.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

nfstream-6.5.3-cp36-cp36m-win_amd64.whl (747.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

nfstream-6.5.3-cp36-cp36m-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

nfstream-6.5.3-cp36-cp36m-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

nfstream-6.5.3-cp36-cp36m-musllinux_1_1_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

nfstream-6.5.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

nfstream-6.5.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

nfstream-6.5.3-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.3-cp36-cp36m-macosx_10_9_x86_64.whl (747.6 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file nfstream-6.5.3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 437457d2921f3eee31ea10df6d0fe9ff2249099403a650f0d0dc9e4b6091d550
MD5 53419be791481b065b9ba84704dfb215
BLAKE2b-256 7e5c4b86213b27035443f0e198f2a8e9fb8ac3967597c7e0280afd860b9e19bb

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06adae1052434d28c6e0e2ce3b9ee0db6cb09779471f5e541f4ec6dec8c9c235
MD5 7ba92d660b007608178ab68f936bd22d
BLAKE2b-256 70789153dd2d50ae6067949ded5e1624d337ce8967b09dd45a60fadd027b8a24

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3b9df3c75ce59e9819c58798270204f7dd1c3c152c8ddf208a2945ce3f5de495
MD5 f5f653db108488d13458437f2f946910
BLAKE2b-256 7fe480615cec0db0a6d304ca07b4b3254b9104889862cc98000641ee0fa2e455

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 214d3d5a9f624bae7898e2fcc1d504ab2fb712a83ee72d33e3530eb9da96d257
MD5 6a0ef430198d7f8d046055de79b0679f
BLAKE2b-256 78695cd3ad32007076db96ef90da6315f490db73461ac6d52366c77efb854cbd

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fd877ff9ef7b49b43f5c65cf7bdf99c8240144635eea9abe6833287f7a53ec64
MD5 7620c651289a5fb08c9500c9b73ee7cd
BLAKE2b-256 b56c1681583f35de10126079c72dd4f95e50d916457e101fffffd893ab8a7e2d

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7f253cbb96cd3a71df35fae8a91a276299aa25336d613e0da86c64ddc2cf6109
MD5 533bcc16c978c62bde688a107fa78de0
BLAKE2b-256 01a4c76987d9060242647e90a76685c938fb5a0944ec4f1a9e27f585619e2d48

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1cc4f272161e041abb977786bdacfdf0f8859d04feda00b7a73b25859b2ef1e8
MD5 c35a4a7c51b7f2427bf5cbbb959969a2
BLAKE2b-256 c95bf455621e689ea3ee8b21f27dbe380af4b1b2d43041d532d8e59e5f94c82d

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 932ef725200fef048172e837f90a5760e8e6b35e0c2edf523b462753cef6d39f
MD5 4b4c26f864b37862b895de8e4a3ab9de
BLAKE2b-256 aebe016928e2b01aa20120dd6aad80f4408d2ab5d8fc6030707478baf7cc1bda

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0767ea07a5f91295dceaddfc2df0a059ec3433aec18d9e534e22857ea13e3ecf
MD5 eb8aec1a9ad1f2415b7c28a5f1ced455
BLAKE2b-256 a4e884401b8c0b871c94eb0a0e23b611445c8dd52631cab4836a102e6a2eebb4

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fc1c9764d3a4d13a1447a70516f3cc4fd034df127f6162c533279b32810cede7
MD5 f1aedbcbbdb1cfc35ed113938d3398fb
BLAKE2b-256 bb2c74e0f3c6fe92702fc6804c7bfa1acaf1e1751b12930a4cce9cf8ece8ab91

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3b0adfcfd0d01c161e208a1284ee905d5dc3a4a6e66d810d3cc1c4f5183a8d92
MD5 27d3394ff0dcc9e62dfe9cbd3fbd3ecb
BLAKE2b-256 1894b8205c4411acf4a0ef1aafb66076a9807aba6e4e473f1a1c717f3bde21f1

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7db74d110de8841164e92e39708fc994ef4b4d03bc554edccab8a5db775cec32
MD5 308314e14df7ceecd34153b34a3ee600
BLAKE2b-256 d538f49fdccb1388c172da548c0f4a37539f81a6700b7bedb3783989065286f3

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 18f57ff9d532f11beb1c3e3a441c9d618dfda782af7ee0a6dbd3ca069d6ed702
MD5 4027a7dbf784dd555d4f1799c52bf58e
BLAKE2b-256 a5a9fe31519b7294ecc36507cd69bfdfbea3045a5f44cd98bac1998a54fe8070

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 866f7be077da8c2178c626cea5b09459b5f22336c9f88477e1ff5a6b09416046
MD5 6f36c554593c71dec5bd558d2f32d489
BLAKE2b-256 b1936d184236c15c6f7820671ccb96b4ce12ca88e9759605e08ebecfb6850cdd

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 45ff41f78e5299b22bf4efc301f20c25431c806c33deb5148979b40296e447c4
MD5 b28de1c82d5763bdc29940b160732a11
BLAKE2b-256 9a5785f60f1ad5f4939b0f9a835d884adffd97ceab5c45bc61ff6dc514e0aefe

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 743.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7ebedf7d3e92a0ce3877acab88ed347728a5475a3b475e0287126b6058a3a1d9
MD5 352379e23cd70f8abc3ae073babb74d4
BLAKE2b-256 594a0282d81197e58b9de3ce47e0889928e99becb1e1e38b10e952a9d1e880d2

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a45b018aed5ebf6c1a56f3df1f289bb33d573b2f3a8deaf6049c0b055b981702
MD5 e7a59f8e1eee7e7f218d01bc1341330e
BLAKE2b-256 a13c75c8ce5392e92d11c1751c7dde2ed754175a7c9f9f489eba43a8f7c0fe17

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e173cebfe80f09f662707ff375e223e164e93399a52d5bbee572804509d7c112
MD5 4456fc37a0367a9a2bf49f423d41b4ff
BLAKE2b-256 9c6c5b8e211efa905713ca477d977d490ce52aab8105ed8a588c4570bb1ac981

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ef4993be96f446b86d811e2d2f24283142cae1e9749c211b36313cfdc494d618
MD5 a05bed281370e01c9283b47784bfe16b
BLAKE2b-256 a2c80e37f9ee4a33aa7018bd4c5b0c79c0f098526bc1e0592b8be4dbe2115358

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b9b29937a8ca50f25712a3a0510200ba8ca474e515a367dd3cb35e3e320a8749
MD5 109da90ed1e8f62ae60d17d031086fb0
BLAKE2b-256 98ab83c3338a163455db9e518e5bc6568dd14f0424aab496b2112da6ff97a8da

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d3f880ebc9b4858516f64d745b11fd1ea6d43bfc2490779608cea69537cf10e4
MD5 9de3c8e80578f1f40b46b10a4c5b5979
BLAKE2b-256 a5e5dd1d5140a6995ad0848cb5bd20c57a3f37348779e77f87d6150eaa99f90d

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d2b8c302a638a56b7934091bf1b89080244b2d0cc192190ae72089d8b9b1a213
MD5 70c2972664c68f305c0f74d3063a26e9
BLAKE2b-256 f8272c875336ff58e6193400bb8b75a83a46bfb826125da770b57ffb1d45a90e

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 19ae503d0b73d8ed77150e2268eeb0668646ce362db023644df3f37532c85920
MD5 21c1f0fa9b53da5c73f92fd57e5dad62
BLAKE2b-256 d4ae504dd999bcbdcfe52f8caed598806e0bd7b6fe0175ea959fda266ddade9a

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 828cd31d6185722fec4d69241d8c9582b02f667ba6d40440beced0752200792c
MD5 524be519514653ef9e64a2f5135b28e7
BLAKE2b-256 dcced74d61d7a944fbe10bbf31e5732529cacaee0e6f25786851dd492b737d7a

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 743.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b95152ffc8c04f3601ef45a174f1571a9d57f126b88ce9f01d7a0d1ce969cdef
MD5 014237bb4233ea9b88d6929629d502b3
BLAKE2b-256 0e548455abb75c728792222bc2517749b360ed65b14c6d1e823ca57a63260848

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a22d250a94759d8225cde9cecce8e37c6533d07a7342fe5a7ffe56dffc3d5606
MD5 b5b709278c5cec34cb9a8520cf221a95
BLAKE2b-256 d66a13c62bf00bf8843dea1b022bdf2ca9d3369bc3e8b3f43cb0adc76f750ac8

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 843fe501f22e76aa0b36d59e2d3233bd5f1c51c4b7fda588bbbd2897f2851726
MD5 c64ce80e1ea0fa64a2e5d0090386b500
BLAKE2b-256 3aea147604b91f7c2b83911f0105845d5479deff2b498f42133c3b0c85302473

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 dca3df4a8f4764a8238a080ca00a1c05057ad7bb93b95fef080230540ce29da0
MD5 bde16faf18876837d863d2faf9cb674c
BLAKE2b-256 aa076be3da33f27e3b8802e0866a31dafd600238151748e3b2a985f498682c5f

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 144d173f01af6cb93cc9b72be0cede4014fe71a676b10980c607c9855b727fe0
MD5 772b26121d3636311190324dde4120eb
BLAKE2b-256 9d0777499c40676d7bb206004efd8793f9df088ef122d8d4dc9fe2edc7e1d22a

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a003e313e3cba3cd2cb5bee9c9362c9ee25da567dbc30f4129c7539ca239c87d
MD5 636f643efcf957f6de3c1156e29e5d58
BLAKE2b-256 6d66889c82af3a674611407fe34492e4332b3d98922556e89940d458586ac20a

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bf9172f5021fcefad2a98f48f1940c2ceeea9176bc613ee4e36ceb7a3db4e069
MD5 9332a858bc52161abdf4bfe584c5812d
BLAKE2b-256 63f9222e69d0dc626c230eb1700214949b429a8b6ffd267fa2c1b0eecd49bf4a

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d39b9d4b4724f2ab959f6c7141c2cf9b3681bc3cbe7179362fda08ec8c9dd87e
MD5 d921fef9788ff7b63f1dc44d81187318
BLAKE2b-256 67a8e635bd17446d7a30ce8ba7d605b6deaba576657ef130d760e64ae9110c6a

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 38a903b49074b6fa6e9dca59897b88541f54583b625488b7619ee4be4192e20e
MD5 25324d28692242c84fc945c9da8c0334
BLAKE2b-256 40829d2198e465ba51b51d8f4883d84af8fa3db193bc5ccd9cc8345eecdbce4c

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 743.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 da7ac0c9c85030b96a08ec016e9a28905619d5db9712607ddcf7ac93c0232f81
MD5 2d544d1395e6eb3d74c98e9246124129
BLAKE2b-256 6d569a69937fe85399b34ab26310c1186c1b17d3d5f926c6a6ac60a84fb6229b

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b84ec3b4c95cdcb0bc005df0de859d53551fc0b00ae8fe952462d90d429cf794
MD5 199a1b10b87427432ca8db57ac3943c6
BLAKE2b-256 acc803e65d2037fe10f59a4e7ddec5afc16e0179d417641137c8fb2a9ac8de86

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b742b62b519382ae3fd1427b93c7a1cd06948b4d83927cc636cc0d5d834cc2e9
MD5 8e8b7d92d6666247e08d911768a25ffb
BLAKE2b-256 ea1512fb1e3235c80dd80b7c582dc1a8a559e060a48a522619d032c978c06ad2

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 35a8c512a83f5fe594fc9ba06fbc4683fad49b3ad49f3c6d143d56bc5bf07ffe
MD5 28edaa6f2c383be7004f69f92123e986
BLAKE2b-256 b7bea5746bc0929aa79871423f9dbdbdfa012a53862a0d2cec8a7cc26d2bc43c

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 177047a868e024452f45477ca166b9f58ce167511c46fd8c21ec0e1ce580157a
MD5 f1a7eb0013ff3b3e316614caa72b2d34
BLAKE2b-256 f9154c78d26dd8614d41a1ae8975c0bc83f0cfdb0f36932eed410d7cff2502e4

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9dcbcd62c712e4e4efae63fcbd1426e349d859b512fbf68ae05c0b41082c1ed4
MD5 491d453ffcfbaaead8903da09579dec0
BLAKE2b-256 872a1a38a41594c5ac3d6c946f8f838abe4e7b7029e4eb12bcbaf50dba1e4677

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 03b7a97aea02f736c797b65f920b8f725cf62753b3ce58b3dce2357c218eee2b
MD5 d70f24cbd720d4e60c3cb987fb8b3d92
BLAKE2b-256 692a88548331d6ca62abec07444a72625173f5d1667effb159b2f6acfb6e0433

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 648db49bb2f34a9182b958026fa6a718eab9a4a1d33a7cd763364d7a36761766
MD5 c65f29b6f9c116645604c5504362ae58
BLAKE2b-256 33e3b62babecbf3c6dc3402d92be22e69a54744bfd4ba152ecaaa350dde08f74

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4fce90b37d9b14f99840b71f9ef63b698713d468d3083f7f925c022125f89ee8
MD5 045f4ab0c74154be50b26f0eb2c8ff6c
BLAKE2b-256 ae3e99a9bbf0489fbe8876776919470036c48e5601571be389ad4a7208109655

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 743.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 251933ae6ea221e958f3ac2c20889eb156a535dc55ea5050a2fa5ac83bfaad05
MD5 3b280ec507e82be5ee049168106a1e89
BLAKE2b-256 b37af38a193e7c2601a789a52f8e2172c9e5c7a14341a2662283fa71274a1acf

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6275c8ba60533b9882915c0b18f337c4fd7bcb840658504a904fbd3bf6b392ca
MD5 b2c19c35f8b466a5655fe929fdb493f5
BLAKE2b-256 167119acd2a4859042d5b9492bf6420fbf49fcff9a1f0956c043ac12405ddcda

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8d6c8b2d1fe07bfbc4d965389d13a0a86f33f6ef2fa511b264bf622055f9744c
MD5 bec870ce9b086f1cea2d0dc228f2324f
BLAKE2b-256 f873b49538fb07b4ae6660a82cd93ce24a996b3b1c1335be6b28f08c184f224a

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e8ce894dc6880538dd26cc56872d329c3d0471346d00eff8ace9e79bc22ba1d4
MD5 c5c5cc223a6c35db2b51a15beeb1fa01
BLAKE2b-256 428613a5da95b7148be1a48ede265e8913cc032e40b398387475d6f1ec1174ee

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb2de0e0b5add157404525f704744863935cda1e332cb26904999e7ea1fcf1d9
MD5 1d2347bd40281c842914a6025f5780eb
BLAKE2b-256 03cded8811f1220404cef257c843d41fbfdad131756f0b4756d9afb99b57077e

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6f347e88f4c5245e27877165823dc870f86b971ca68c9b895ad45dfc0c83a16f
MD5 f9ee13a04adb66ae02e8ed52c21f00d2
BLAKE2b-256 0d059636cee0a41226428dce70f4ca9e8b447dcb116ecc8776a813f6f1763501

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0989653f57f7adc1d33154c85fd354b317ecfe6c0a934af2b84a0758290a400b
MD5 953c9ab16c830fd48c4bce5ec72d7abb
BLAKE2b-256 030d7ce3dfb3596378d17c56a5c175492bdca3af629448c20e071b0a6c78ba87

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9e24c4e6d29927df63fd0f88461dfce2f2d515bae10c3f9e6cd71b19a238ec17
MD5 25a18844908b0393a49d400516caeeb9
BLAKE2b-256 7a4fce56e5ffbcb639f412ea36c8f877bfa73d4e584b8463ebc09eb037ac34f8

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0ab41d8db23ff482055b39fb76b8c9fd01d9018a35de4dcb17975f8bb025bb62
MD5 ac89f1f02bf54bc9b5de6d24bd06356e
BLAKE2b-256 91be085363d6788b97b0de22bec610ba161603c74ddf430b1c1f22f858baac42

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 743.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f4228d56ab276f05104ff0a78be94d8843c1a736d8ae709e803f9c7d1f08aa9a
MD5 bec98e8e4f478cc89a4cfff2d7416f82
BLAKE2b-256 a63242085cbe83dc40b9b45a958534eef3d5b6133d98d06eddb5017fa5c30178

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cdab540c8530bb487e535475337ea354bbb75c64e6dd42e3b251005c84aaee89
MD5 7a104595c9cf9785d801b6fd74eb56c6
BLAKE2b-256 4dde746a1bdbef5c244b311a4c4476e4ed8d0e48e77dc9516574a21d013b372e

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3b0a02c798021329e8f0636e1c0cbe2bc5489480189a07b58c3245624deced61
MD5 68ad9d8776e664087c2424b7a49de4e1
BLAKE2b-256 79d2e3bfc794627466cdcdb9c7398a243f8fe9f8d440a97ea87f405a380e2c19

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 823a4ed74387145917451758c460d11c30e0dd5555ec3e2337e0adb8d4a4f02f
MD5 345b289a92315844b09a9e21d113fc2e
BLAKE2b-256 40f45d2f1c78a4423ad233be6ed1406782ec4a48ab9a0892745d994d5a3743ea

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a787671425b965cc19459561f235e6d751ea4944e64496352fc80c83ff71524a
MD5 e3dca9ad6e14463c4b0ab5e042d751b5
BLAKE2b-256 0526452456e6e71ae3b39fb99c92a0b54cbddf81d9c4ffa3e227bd7487ef696b

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3dd5fd5dc6920269f4b46e377a886d15a14e75a2a42a8299b47d340737180458
MD5 5ac86434dc65e3030c2024d6376b5687
BLAKE2b-256 497cef7f05c229ba0b8b16e7ac82b0f9780e26bc98a77d33ce8326d6573936dc

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 85aacb5ffcb1db9e61ce51b64d32ec0c23f8d7a1dc91bdcc24439d2c429515cc
MD5 6b03e457962aa415bbad8c36b6932203
BLAKE2b-256 a821272b6df05281836816f865c00eb92e1991b0f52ed96ec6c238273f60670c

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6202d956c0b5cc37739bbb6780f0ab8a3b9aff4d4b894592f5c4c2d640d59401
MD5 96284e1ed26d91ae0ea88ccd613a9b37
BLAKE2b-256 0c46f089322f25061dd32f0cab5a99ae3d72ae0d566f208df72424a558d38684

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 747.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f5b1b35e70313ada0b10a2fd017794c557d649bf24ac9beed8ed53ea8f4300d6
MD5 0109ea98c4b740261be048e1dbcce3ac
BLAKE2b-256 1f700a9f086eb86cab3758984ff98c6955ca3380e97f21c8868edb09ee9f8052

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b041b8f394079b1c378271db9a8bbcfbb6837398a4d405c4a9d4e7fb4ea0b4bf
MD5 282823da4f59a18f48dd3b20647e1c52
BLAKE2b-256 2a977983c34e96b53d4cc4aedb32ab47925e56fee2374f9185218f2b3a0b14da

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d5d09350af3d7fed72909d3f9dd2ba572573cb03f24d7ce7d7ece817e4d0e8b7
MD5 90d7bfa85e9aece1c1df0496b090670e
BLAKE2b-256 7bef2bbf159b849e13501fb6a058dee16a7dd40751dece9e3da91a1f7b77c99f

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 fefbca1ad5058b0e6a40ade7f2fb883f915ca887cba9c0563d7025296cffc895
MD5 e257640513281975acfa2d8523cbc872
BLAKE2b-256 312853cfe0bf44e91acd8ccb5d1688c051fd10d96b3f15417214aa27b965aa33

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dbdbc54e9d2179b91e012366d7edbc7c8b9aaf15a024d3342f97b43e3307f9a2
MD5 9d268dc45945a498599f218416cfaeb4
BLAKE2b-256 f53464129631c8def2489ea627a5a6237cac4a0996707ce794efed40c8f35ee8

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ad2be026ec5d8be46db4ac7416b2f2c9c7da95ab97c153b04a80e623451ff79
MD5 3880ef984584d4c9857bc4698495276b
BLAKE2b-256 8c090420aedf42e05ca67091cb1ed099835913b10da1703a7c0c755223b622e2

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9dd56c8d3c192090a88bda96cdabd0637becb117364d6de5f1be39606687ba49
MD5 b77b599a1583282879110940888a3240
BLAKE2b-256 4f76832353de0319238541e95f8d96c0ac049e86e92616caedf8fe2bf4982902

See more details on using hashes here.

File details

Details for the file nfstream-6.5.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6bb2bc702e6819a12dc861d63ee40c0f0b58ac878231557e4dc81be9f2f0072e
MD5 2f5793a84ac3ab892f4760cfca4f4465
BLAKE2b-256 a749f64128d23242d351a654e606d83ba74be7639d8b662b27be3bd2e4e1e5e1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page