Skip to main content

A flexible network data analysis framework

Project description

nfstream: a flexible network data analysis framework

nfstream is a Python package providing fast, flexible, and expressive data structures designed to make working with online or offline network data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world network data analysis in Python. Additionally, it has the broader goal of becoming a common network data processing framework for researchers providing data reproducibility across experiments.

Live Demo Notebook live notebook
Project Website website
Latest Release latest release
Citation DOI
Downloads downloads
Supported Platforms Linux MacOS
Supported Versions python3 pypy3
Build Status Github WorkFlows
Code Quality Quality
Code Coverage Coverage
Discussion Channel Gitter

Main Features

  • Performance: nfstream is designed to be fast (x10 faster with pypy3 support) with a small CPU and memory footprint.
  • Layer-7 visibility: nfstream deep packet inspection engine is based on nDPI. It allows nfstream to perform reliable encrypted applications identification and metadata extraction (e.g. TLS, QUIC, TOR, HTTP, SSH, DNS, etc.).
  • Flexibility: add a flow feature in 2 lines as an NFPlugin.
  • Machine Learning oriented: add your trained model as an NFPlugin.

How to use it?

  • Dealing with a big pcap file and just want to aggregate it as network flows? nfstream make this path easier in few lines:
from nfstream import NFStreamer
my_awesome_streamer = NFStreamer(source="facebook.pcap") # or network interface (source="eth0")
for flow in my_awesome_streamer:
    print(flow)  # print it, append to pandas Dataframe or whatever you want :)!
NFEntry(
    id=0,
    bidirectional_first_seen_ms=1472393122365.661,
    bidirectional_last_seen_ms=1472393123665.163,
    src2dst_first_seen_ms=1472393122365.661,
    src2dst_last_seen_ms=1472393123408.152,
    dst2src_first_seen_ms=1472393122668.038,
    dst2src_last_seen_ms=1472393123665.163,
    version=4,
    src_port=52066,
    dst_port=443,
    protocol=6,
    vlan_id=4,
    src_ip='192.168.43.18',
    dst_ip='66.220.156.68',
    bidirectional_packets=19,
    bidirectional_raw_bytes=5745,
    bidirectional_ip_bytes=5479,
    bidirectional_duration_ms=1299.502197265625,
    src2dst_packets=9, src2dst_raw_bytes=1345,
    src2dst_ip_bytes=1219,
    src2dst_duration_ms=1299.502197265625,
    dst2src_packets=10,
    dst2src_raw_bytes=4400,
    dst2src_ip_bytes=4260,
    dst2src_duration_ms=997.125,
    expiration_id=0,
    master_protocol=91,
    app_protocol=119,
    application_name='TLS.Facebook',
    category_name='SocialNetwork',
    client_info='facebook.com',
    server_info='*.facebook.com,*.facebook.net,*.fb.com,*.fbcdn.net,\
                *.fbsbx.com,*.m.facebook.com,*.messenger.com,*.xx.fbcdn.net,\
                *.xy.fbcdn.net,*.xz.fbcdn.net,facebook.com,fb.com,messenger.com',
    j3a_client='bfcc1a3891601edb4f137ab7ab25b840',
    j3a_server='2d1eb5817ece335c24904f516ad5da12'
)
from nfstream import NFStreamer
my_awesome_streamer = NFStreamer(source="facebook.pcap", statistics=True)
for flow in my_awesome_streamer:
    print(flow)
NFEntry(
    id=0,
    bidirectional_first_seen_ms=1472393122365.661,
    bidirectional_last_seen_ms=1472393123665.163,
    src2dst_first_seen_ms=1472393122365.661,
    src2dst_last_seen_ms=1472393123408.152,
    dst2src_first_seen_ms=1472393122668.038,
    dst2src_last_seen_ms=1472393123665.163,
    version=4,
    src_port=52066,
    dst_port=443,
    protocol=6,
    vlan_id=4,
    src_ip='192.168.43.18',
    dst_ip='66.220.156.68',
    bidirectional_packets=19,
    bidirectional_raw_bytes=5745,
    bidirectional_ip_bytes=5479,
    bidirectional_duration_ms=1299.502197265625,
    src2dst_packets=9,
    src2dst_raw_bytes=1345,
    src2dst_ip_bytes=1219,
    src2dst_duration_ms=1299.502197265625,
    dst2src_packets=10,
    dst2src_raw_bytes=4400,
    dst2src_ip_bytes=4260,
    dst2src_duration_ms=997.125,
    expiration_id=0,
    bidirectional_min_raw_ps=66,
    bidirectional_mean_raw_ps=302.36842105263156,
    bidirectional_stdev_raw_ps=425.53315715259754,
    bidirectional_max_raw_ps=1454,
    src2dst_min_raw_ps=66,
    src2dst_mean_raw_ps=149.44444444444446,
    src2dst_stdev_raw_ps=132.20354676701294,
    src2dst_max_raw_ps=449,
    dst2src_min_raw_ps=66,
    dst2src_mean_raw_ps=440.0,
    dst2src_stdev_raw_ps=549.7164925870628,
    dst2src_max_raw_ps=1454,
    bidirectional_min_ip_ps=52,
    bidirectional_mean_ip_ps=288.36842105263156,
    bidirectional_stdev_ip_ps=425.53315715259754,
    bidirectional_max_ip_ps=1440,
    src2dst_min_ip_ps=52,
    src2dst_mean_ip_ps=135.44444444444446,
    src2dst_stdev_ip_ps=132.20354676701294,
    src2dst_max_ip_ps=435,
    dst2src_min_ip_ps=52,
    dst2src_mean_ip_ps=426.0,
    dst2src_stdev_ip_ps=549.7164925870628,
    dst2src_max_ip_ps=1440,
    bidirectional_min_piat_ms=0.0029296875,
    bidirectional_mean_piat_ms=72.19456651475694,
    bidirectional_stdev_piat_ms=137.32250609970072,
    bidirectional_max_piat_ms=397.63720703125,
    src2dst_min_piat_ms=0.008056640625,
    src2dst_mean_piat_ms=130.3114013671875,
    src2dst_stdev_piat_ms=179.64644832489174,
    src2dst_max_piat_ms=414.4921875,
    dst2src_min_piat_ms=0.006103515625,
    dst2src_mean_piat_ms=110.79166666666669,
    dst2src_stdev_piat_ms=169.61844149451002,
    dst2src_max_piat_ms=0.531005859375,
    bidirectional_syn_packets=2,
    bidirectional_cwr_packets=0,
    bidirectional_ece_packets=0,
    bidirectional_urg_packets=0,
    bidirectional_ack_packets=18,
    bidirectional_psh_packets=9,
    bidirectional_rst_packets=0,
    bidirectional_fin_packets=0,
    src2dst_syn_packets=1,
    src2dst_cwr_packets=0,
    src2dst_ece_packets=0,
    src2dst_urg_packets=0,
    src2dst_ack_packets=8,
    src2dst_psh_packets=4,
    src2dst_rst_packets=0,
    src2dst_fin_packets=0,
    dst2src_syn_packets=1,
    dst2src_cwr_packets=0,
    dst2src_ece_packets=0,
    dst2src_urg_packets=0,
    dst2src_ack_packets=10,
    dst2src_psh_packets=5,
    dst2src_rst_packets=0,
    dst2src_fin_packets=0, 
    master_protocol=91,
    app_protocol=119,
    application_name='TLS.Facebook',
    category_name='SocialNetwork',
    client_info='facebook.com',
    server_info='*.facebook.com,*.facebook.net,*.fb.com,*.fbcdn.net,\
                *.fbsbx.com,*.m.facebook.com,*.messenger.com,*.xx.fbcdn.net,\
                *.xy.fbcdn.net,*.xz.fbcdn.net,facebook.com,fb.com,messenger.com',
    j3a_client='bfcc1a3891601edb4f137ab7ab25b840',
    j3a_server='2d1eb5817ece335c24904f516ad5da12'
)
  • From pcap to Pandas DataFrame?
my_dataframe = NFStreamer(source='devil.pcap').to_pandas()
my_dataframe.head(5)
  • Didn't find a specific flow feature? add a plugin to nfstream in few lines:
from nfstream import NFPlugin

class packet_with_666_size(NFPlugin):
    def on_init(self, pkt): # flow creation with the first packet
        if pkt.raw_size == 666:
            return 1
        else:
            return 0

    def on_update(self, pkt, flow): # flow update with each packet belonging to the flow
        if pkt.pkt.raw_size == 666:
            flow.packet_with_666_size += 1

streamer_awesome = NFStreamer(source='devil.pcap', plugins=[packet_with_666_size()])
for flow in streamer_awesome:
    print(flow.packet_with_666_size) # see your dynamically created metric in generated flows

Installation

Using pip

Binary installers for the latest released version are available:

python3 -m pip install nfstream

Build from sources

If you want to build nfstream from sources on your local machine:

On Linux

sudo apt-get install autoconf automake libtool pkg-config libpcap-dev
git clone https://github.com/aouinizied/nfstream.git
cd nfstream
python3 -m pip install -r requirements.txt
python3 setup.py bdist_wheel

On MacOS

brew install autoconf automake libtool pkg-config
git clone https://github.com/aouinizied/nfstream.git
cd nfstream
python3 -m pip install -r requirements.txt
python3 setup.py bdist_wheel

Contributing

Please read Contributing for details on our code of conduct, and the process for submitting pull requests to us.

Authors

Zied Aouini created nfstream and these fine people have contributed.

Ethics

nfstream is intended for network data research and forensics. Researchers and network data scientists can use these framework to build reliable datasets, train and evaluate network applied machine learning models. As with any packet monitoring tool, nfstream could potentially be misused. Do not run it on any network of which you are not the owner or the administrator.

License

This project is licensed under the GPLv3 License - see the License file for details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nfstream-4.0.0-cp38-cp38-manylinux1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8

nfstream-4.0.0-cp37-cp37m-manylinux1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m

nfstream-4.0.0-cp37-cp37m-macosx_10_15_x86_64.whl (451.4 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

nfstream-4.0.0-cp36-cp36m-manylinux1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m

File details

Details for the file nfstream-4.0.0-pp36-pypy36_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: nfstream-4.0.0-pp36-pypy36_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 PyPy/7.3.0

File hashes

Hashes for nfstream-4.0.0-pp36-pypy36_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e2f39ccb119e835ea1bb71fe81f5c504dcde973aeb0ec83359a31305101b714c
MD5 8777e8efdcd83b6fd04cb023d7f2f5c2
BLAKE2b-256 77aee44d06facb86c3a4999cdbe3b98a6e1cd917cefda483aad8d261ceb84f67

See more details on using hashes here.

File details

Details for the file nfstream-4.0.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: nfstream-4.0.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for nfstream-4.0.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5052af96a7dd9bb75fe33a5d30c5823781322554bc16d2ad747a6828f76147ce
MD5 5462c6e0c652b3030dbab9ba26b203e3
BLAKE2b-256 20a26176947a7418158a1017deede630bdc5682167fcb7944a671eaea7ee01dc

See more details on using hashes here.

File details

Details for the file nfstream-4.0.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nfstream-4.0.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for nfstream-4.0.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 938e152b414fd419443dbe84a84f9a797c8aa49ed621907858b808d82510c93f
MD5 bcc236e9a65482958ed2eb2b81813ed0
BLAKE2b-256 17b74c0df4e7ef15b681d565e5bce5a9caeb80a27982783130ed47001ec58f7a

See more details on using hashes here.

File details

Details for the file nfstream-4.0.0-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: nfstream-4.0.0-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 451.4 kB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for nfstream-4.0.0-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3b2ce0e34ed873bc36626164bcb176f8598fbfbf39c82e50cf4658795863c8c6
MD5 b9fcd7fe031a11d5f422cb1c05e5328e
BLAKE2b-256 d64318562dfb5e3eb4eac718479e0aebca2e68de394a584647b13f4e9fe31a34

See more details on using hashes here.

File details

Details for the file nfstream-4.0.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nfstream-4.0.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.10

File hashes

Hashes for nfstream-4.0.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 13c05680f2a3486b17126c1f174dab97b0a5ffc5bd39bee7cf62593b3e59c7be
MD5 6542bface5eb57e668138c48d8cc5e21
BLAKE2b-256 906e249d473af19fde9d7ce3f43ad59ff141fc271f7a841079c33d17207b86ca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page