Skip to main content

A flexible network data analysis framework

Project description

nfstream: a flexible network data analysis framework

nfstream is a Python package providing fast, flexible, and expressive data structures designed to make working with online or offline network data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world network data analysis in Python. Additionally, it has the broader goal of becoming a common network data processing framework for researchers providing data reproducibility across experiments.

Live Notebook live notebook
Project Website website
Discussion Channel Gitter
Latest Release latest release
Supported Versions python3
Build Status Github WorkFlows
Code Quality Quality
Code Coverage Coverage
Project License License

Main Features

  • Performance: nfstream is designed to be fast (x10 faster with PyPy support) with a small CPU and memory footprint.
  • Layer-7 visibility: nfstream deep packet inspection engine is based on nDPI. It allows nfstream to perform reliable encrypted applications identification and metadata extraction (e.g. TLS, QUIC, TOR, HTTP, SSH, DNS, etc.).
  • Flexibility: add a flow feature in 2 lines as an NFPlugin.
  • Machine Learning oriented: add your trained model as an NFPlugin.

How to use it?

  • Dealing with a big pcap file and just want to aggregate it as network flows? nfstream make this path easier in few lines:
from nfstream import NFStreamer
my_awesome_streamer = NFStreamer(source="facebook.pcap", # or network interface (source="eth0")
                                 snaplen=65535,
                                 idle_timeout=30,
                                 active_timeout=300,
                                 plugins=(),
                                 dissect=True,
                                 max_tcp_dissections=10,
                                 max_udp_dissections=16,
                                 statistics=False,
                                 account_ip_padding_size=False,
                                 enable_guess=True
)

for flow in my_awesome_streamer:
    print(flow)  # print it.
    print(flow.to_namedtuple()) # convert it to a named tuple.
    print(flow.to_json()) # convert it to json.
NFEntry(
    id=0,
    bidirectional_first_seen_ms=1472393122365.661,
    bidirectional_last_seen_ms=1472393123665.163,
    src2dst_first_seen_ms=1472393122365.661,
    src2dst_last_seen_ms=1472393123408.152,
    dst2src_first_seen_ms=1472393122668.038,
    dst2src_last_seen_ms=1472393123665.163,
    version=4,
    src_port=52066,
    dst_port=443,
    protocol=6,
    vlan_id=4,
    src_ip='192.168.43.18',
    dst_ip='66.220.156.68',
    bidirectional_packets=19,
    bidirectional_raw_bytes=5745,
    bidirectional_ip_bytes=5479,
    bidirectional_duration_ms=1299.502197265625,
    src2dst_packets=9, src2dst_raw_bytes=1345,
    src2dst_ip_bytes=1219,
    src2dst_duration_ms=1299.502197265625,
    dst2src_packets=10,
    dst2src_raw_bytes=4400,
    dst2src_ip_bytes=4260,
    dst2src_duration_ms=997.125,
    expiration_id=0,
    master_protocol=91,
    app_protocol=119,
    application_name='TLS.Facebook',
    category_name='SocialNetwork',
    client_info='facebook.com',
    server_info='*.facebook.com,*.facebook.net,*.fb.com,*.fbcdn.net,\
                *.fbsbx.com,*.m.facebook.com,*.messenger.com,*.xx.fbcdn.net,\
                *.xy.fbcdn.net,*.xz.fbcdn.net,facebook.com,fb.com,messenger.com',
    j3a_client='bfcc1a3891601edb4f137ab7ab25b840',
    j3a_server='2d1eb5817ece335c24904f516ad5da12'
)
from nfstream import NFStreamer
my_awesome_streamer = NFStreamer(source="facebook.pcap", statistics=True)
for flow in my_awesome_streamer:
    print(flow)
NFEntry(
    id=0,
    bidirectional_first_seen_ms=1472393122365.661,
    bidirectional_last_seen_ms=1472393123665.163,
    src2dst_first_seen_ms=1472393122365.661,
    src2dst_last_seen_ms=1472393123408.152,
    dst2src_first_seen_ms=1472393122668.038,
    dst2src_last_seen_ms=1472393123665.163,
    version=4,
    src_port=52066,
    dst_port=443,
    protocol=6,
    vlan_id=4,
    src_ip='192.168.43.18',
    dst_ip='66.220.156.68',
    bidirectional_packets=19,
    bidirectional_raw_bytes=5745,
    bidirectional_ip_bytes=5479,
    bidirectional_duration_ms=1299.502197265625,
    src2dst_packets=9,
    src2dst_raw_bytes=1345,
    src2dst_ip_bytes=1219,
    src2dst_duration_ms=1299.502197265625,
    dst2src_packets=10,
    dst2src_raw_bytes=4400,
    dst2src_ip_bytes=4260,
    dst2src_duration_ms=997.125,
    expiration_id=0,
    bidirectional_min_raw_ps=66,
    bidirectional_mean_raw_ps=302.36842105263156,
    bidirectional_stdev_raw_ps=425.53315715259754,
    bidirectional_max_raw_ps=1454,
    src2dst_min_raw_ps=66,
    src2dst_mean_raw_ps=149.44444444444446,
    src2dst_stdev_raw_ps=132.20354676701294,
    src2dst_max_raw_ps=449,
    dst2src_min_raw_ps=66,
    dst2src_mean_raw_ps=440.0,
    dst2src_stdev_raw_ps=549.7164925870628,
    dst2src_max_raw_ps=1454,
    bidirectional_min_ip_ps=52,
    bidirectional_mean_ip_ps=288.36842105263156,
    bidirectional_stdev_ip_ps=425.53315715259754,
    bidirectional_max_ip_ps=1440,
    src2dst_min_ip_ps=52,
    src2dst_mean_ip_ps=135.44444444444446,
    src2dst_stdev_ip_ps=132.20354676701294,
    src2dst_max_ip_ps=435,
    dst2src_min_ip_ps=52,
    dst2src_mean_ip_ps=426.0,
    dst2src_stdev_ip_ps=549.7164925870628,
    dst2src_max_ip_ps=1440,
    bidirectional_min_piat_ms=0.0029296875,
    bidirectional_mean_piat_ms=72.19456651475694,
    bidirectional_stdev_piat_ms=137.32250609970072,
    bidirectional_max_piat_ms=397.63720703125,
    src2dst_min_piat_ms=0.008056640625,
    src2dst_mean_piat_ms=130.3114013671875,
    src2dst_stdev_piat_ms=179.64644832489174,
    src2dst_max_piat_ms=414.4921875,
    dst2src_min_piat_ms=0.006103515625,
    dst2src_mean_piat_ms=110.79166666666669,
    dst2src_stdev_piat_ms=169.61844149451002,
    dst2src_max_piat_ms=0.531005859375,
    bidirectional_syn_packets=2,
    bidirectional_cwr_packets=0,
    bidirectional_ece_packets=0,
    bidirectional_urg_packets=0,
    bidirectional_ack_packets=18,
    bidirectional_psh_packets=9,
    bidirectional_rst_packets=0,
    bidirectional_fin_packets=0,
    src2dst_syn_packets=1,
    src2dst_cwr_packets=0,
    src2dst_ece_packets=0,
    src2dst_urg_packets=0,
    src2dst_ack_packets=8,
    src2dst_psh_packets=4,
    src2dst_rst_packets=0,
    src2dst_fin_packets=0,
    dst2src_syn_packets=1,
    dst2src_cwr_packets=0,
    dst2src_ece_packets=0,
    dst2src_urg_packets=0,
    dst2src_ack_packets=10,
    dst2src_psh_packets=5,
    dst2src_rst_packets=0,
    dst2src_fin_packets=0, 
    master_protocol=91,
    app_protocol=119,
    application_name='TLS.Facebook',
    category_name='SocialNetwork',
    client_info='facebook.com',
    server_info='*.facebook.com,*.facebook.net,*.fb.com,*.fbcdn.net,\
                *.fbsbx.com,*.m.facebook.com,*.messenger.com,*.xx.fbcdn.net,\
                *.xy.fbcdn.net,*.xz.fbcdn.net,facebook.com,fb.com,messenger.com',
    j3a_client='bfcc1a3891601edb4f137ab7ab25b840',
    j3a_server='2d1eb5817ece335c24904f516ad5da12'
)
  • From pcap to Pandas DataFrame?
my_dataframe = NFStreamer(source='devil.pcap').to_pandas()
my_dataframe.head(5)
  • Didn't find a specific flow feature? add a plugin to nfstream in few lines:
from nfstream import NFPlugin

class packet_with_666_size(NFPlugin):
    def on_init(self, pkt): # flow creation with the first packet
        if pkt.raw_size == 666:
            return 1
        else:
            return 0

    def on_update(self, pkt, flow): # flow update with each packet belonging to the flow
        if pkt.pkt.raw_size == 666:
            flow.packet_with_666_size += 1

streamer_awesome = NFStreamer(source='devil.pcap', plugins=[packet_with_666_size()])
for flow in streamer_awesome:
    print(flow.packet_with_666_size) # see your dynamically created metric in generated flows

Installation

Using pip

Binary installers for the latest released version are available:

python3 -m pip install nfstream

Build from sources

If you want to build nfstream from sources on your local machine:

linux Linux

sudo apt-get install autoconf automake libtool pkg-config libpcap-dev
git clone https://github.com/aouinizied/nfstream.git
cd nfstream
python3 -m pip install -r requirements.txt
python3 setup.py bdist_wheel

osx MacOS

brew install autoconf automake libtool pkg-config
git clone https://github.com/aouinizied/nfstream.git
cd nfstream
python3 -m pip install -r requirements.txt
python3 setup.py bdist_wheel

Contributing

Please read Contributing for details on our code of conduct, and the process for submitting pull requests to us.

Authors

Zied Aouini created nfstream and these fine people have contributed.

Ethics

nfstream is intended for network data research and forensics. Researchers and network data scientists can use these framework to build reliable datasets, train and evaluate network applied machine learning models. As with any packet monitoring tool, nfstream could potentially be misused. Do not run it on any network of which you are not the owner or the administrator.

License

This project is licensed under the GPLv3 License - see the License file for details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nfstream-4.0.1-cp38-cp38-manylinux1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8

nfstream-4.0.1-cp37-cp37m-manylinux1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m

nfstream-4.0.1-cp37-cp37m-macosx_10_15_x86_64.whl (452.3 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

nfstream-4.0.1-cp36-cp36m-manylinux1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m

File details

Details for the file nfstream-4.0.1-pp36-pypy36_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: nfstream-4.0.1-pp36-pypy36_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 PyPy/7.3.0

File hashes

Hashes for nfstream-4.0.1-pp36-pypy36_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0ee0dbe47e313af4b59bff8511539d3d74e0223bff97617c6aa366778a4880cc
MD5 69f81373d649e59885159da3686384a4
BLAKE2b-256 771b4075017183001e0b884a2884439040a3accf3ebc876e373a9f414364dca3

See more details on using hashes here.

File details

Details for the file nfstream-4.0.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: nfstream-4.0.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for nfstream-4.0.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5bc6aa18992ae1d183cfcfaf12ac3354b7ac045c577548715cfed5525ab7ccdc
MD5 4fe8e8cf00cb67457d599a4abeceaee4
BLAKE2b-256 0a3ce943d27399f814bef33d10a74d2cf450a3740bbfa86a794832ec04c1c801

See more details on using hashes here.

File details

Details for the file nfstream-4.0.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nfstream-4.0.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for nfstream-4.0.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 516cb03dfee08651039b39b21b3eb2a270a63714b8e9b3215c2c116926a3188d
MD5 37a0fda7da3cec460fd2db5a870c2f14
BLAKE2b-256 864dd4ed9ee093cb14d7ca1cf237fd70369fcac56119d3b0ab7eef5fb5155244

See more details on using hashes here.

File details

Details for the file nfstream-4.0.1-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: nfstream-4.0.1-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 452.3 kB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for nfstream-4.0.1-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 49057190f27a4a0ef24357bb8c04ba1b2f7e3a2c96c32f1ac542cd759b1eba1e
MD5 d199ba01d6db82b6da076659afdd5594
BLAKE2b-256 7c8e7cb724b9951fd707bcd30b0a9f548ad8055a916be19c6eed07bdae1590a1

See more details on using hashes here.

File details

Details for the file nfstream-4.0.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nfstream-4.0.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.10

File hashes

Hashes for nfstream-4.0.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 62823256ad961db9d941cb31ea51adbcb60dc2f932166259ee3a4bf3c1a3c268
MD5 8485312b113e1afa06ea42303e67bf72
BLAKE2b-256 2928388d5f793ac2fe0c4d2c06999b24f4c54146c9d6e08e24631d0badff90c9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page