Skip to main content

A Flexible Network Data Analysis Framework

Project description

NFStream Logo


NFStream is a Python framework providing fast, flexible, and expressive data structures designed to make working with online or offline network data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world network data analysis in Python. Additionally, it has the broader goal of becoming a common network data analytics framework for researchers providing data reproducibility across experiments.

Live Notebook live notebook
Project Website website
Discussion Channel Gitter
Latest Release latest release
Supported Versions python3 pypy3
Project License License
Build Status Github WorkFlows
Code Quality Quality Quality
Code Coverage Coverage

Main Features

  • Performance: NFStream is designed to be fast: AF_PACKETV3/FANOUT on Linux, parallel processing, native C (using CFFI) for critical computation and PyPy support.
  • Encrypted layer-7 visibility: NFStream deep packet inspection is based on nDPI. It allows NFStream to perform reliable encrypted applications identification and metadata fingerprinting (e.g. TLS, SSH, DHCP, HTTP).
  • Statistical features extraction: NFStream provides state of the art of flow-based statistical feature extraction. It includes both post-mortem statistical features (e.g. min, mean, stddev and max of packet size and inter arrival time) and early flow features (e.g. sequence of first n packets sizes, inter arrival times and directions).
  • Flexibility: NFStream is easily extensible using NFPlugins. It allows to create a new feature within a few lines of Python.
  • Machine Learning oriented: NFStream aims to make Machine Learning Approaches for network traffic management reproducible and deployable. By using NFStream as a common framework, researchers ensure that models are trained using the same feature computation logic and thus, a fair comparison is possible. Moreover, trained models can be deployed and evaluated on live network using NFPlugins.

How to get it?

Binary installers for the latest released version are available on Pypi.

pip install nfstream

How to use it?

Encrypted application identification and metadata extraction

Dealing with a big pcap file and just want to aggregate into labeled network flows? NFStream make this path easier in few lines:

from nfstream import NFStreamer
# We display all streamer parameters with their default values.
# See documentation for detailed information about each parameter.
# https://www.nfstream.org/docs/api#nfstreamer
my_streamer = NFStreamer(source="facebook.pcap", # or network interface
                         decode_tunnels=True,
                         bpf_filter=None,
                         promiscuous_mode=True,
                         snapshot_length=1536,
                         idle_timeout=120,
                         active_timeout=1800,
                         accounting_mode=0,
                         udps=None,
                         n_dissections=20,
                         statistical_analysis=False,
                         splt_analysis=0,
                         n_meters=0,
                         performance_report=0)

for flow in my_streamer:
    print(flow)  # print it.
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=52066,
      dst_ip='66.220.156.68',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1472393122365,
      bidirectional_last_seen_ms=1472393123665,
      bidirectional_duration_ms=1300,
      bidirectional_packets=19,
      bidirectional_bytes=5745,
      src2dst_first_seen_ms=1472393122365,
      src2dst_last_seen_ms=1472393123408,
      src2dst_duration_ms=1043,
      src2dst_packets=9,
      src2dst_bytes=1345,
      dst2src_first_seen_ms=1472393122668,
      dst2src_last_seen_ms=1472393123665,
      dst2src_duration_ms=997,
      dst2src_packets=10,
      dst2src_bytes=4400,
      application_name='TLS.Facebook',
      application_category_name='SocialNetwork',
      application_is_guessed=0,
      requested_server_name='facebook.com',
      client_fingerprint='bfcc1a3891601edb4f137ab7ab25b840',
      server_fingerprint='2d1eb5817ece335c24904f516ad5da12',
      user_agent='',
      content_type='')

Post-mortem statistical flow features extraction

NFStream performs 48 post mortem flow statistical features extraction which include detailed TCP flags analysis, minimum, mean, maximum and standard deviation of both packet size and interarrival time in each direction.

from nfstream import NFStreamer
my_streamer = NFStreamer(source="facebook.pcap",
                         # Disable L7 dissection for readability purpose.
                         n_dissections=0,  
                         statistical_analysis=True)
for flow in my_streamer:
    print(flow)
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=52066,
      dst_ip='66.220.156.68',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1472393122365,
      bidirectional_last_seen_ms=1472393123665,
      bidirectional_duration_ms=1300,
      bidirectional_packets=19,
      bidirectional_bytes=5745,
      src2dst_first_seen_ms=1472393122365,
      src2dst_last_seen_ms=1472393123408,
      src2dst_duration_ms=1043,
      src2dst_packets=9,
      src2dst_bytes=1345,
      dst2src_first_seen_ms=1472393122668,
      dst2src_last_seen_ms=1472393123665,
      dst2src_duration_ms=997,
      dst2src_packets=10,
      dst2src_bytes=4400,
      bidirectional_min_ps=66,
      bidirectional_mean_ps=302.36842105263156,
      bidirectional_stddev_ps=425.53315715259754,
      bidirectional_max_ps=1454,
      src2dst_min_ps=66,
      src2dst_mean_ps=149.44444444444446,
      src2dst_stddev_ps=132.20354676701294,
      src2dst_max_ps=449,
      dst2src_min_ps=66,
      dst2src_mean_ps=440.0,
      dst2src_stddev_ps=549.7164925870628,
      dst2src_max_ps=1454,
      bidirectional_min_piat_ms=0,
      bidirectional_mean_piat_ms=72.22222222222223,
      bidirectional_stddev_piat_ms=137.34994188549086,
      bidirectional_max_piat_ms=398,
      src2dst_min_piat_ms=0,
      src2dst_mean_piat_ms=130.375,
      src2dst_stddev_piat_ms=179.72036811192467,
      src2dst_max_piat_ms=415,
      dst2src_min_piat_ms=0,
      dst2src_mean_piat_ms=110.77777777777777,
      dst2src_stddev_piat_ms=169.51458475436397,
      dst2src_max_piat_ms=409,
      bidirectional_syn_packets=2,
      bidirectional_cwr_packets=0,
      bidirectional_ece_packets=0,
      bidirectional_urg_packets=0,
      bidirectional_ack_packets=18,
      bidirectional_psh_packets=9,
      bidirectional_rst_packets=0,
      bidirectional_fin_packets=0,
      src2dst_syn_packets=1,
      src2dst_cwr_packets=0,
      src2dst_ece_packets=0,
      src2dst_urg_packets=0,
      src2dst_ack_packets=8,
      src2dst_psh_packets=4,
      src2dst_rst_packets=0,
      src2dst_fin_packets=0,
      dst2src_syn_packets=1,
      dst2src_cwr_packets=0,
      dst2src_ece_packets=0,
      dst2src_urg_packets=0,
      dst2src_ack_packets=10,
      dst2src_psh_packets=5,
      dst2src_rst_packets=0,
      dst2src_fin_packets=0)

Early statistical flow features extraction

NFStream performs early (up to 255 packets) flow statistical features extraction (also referred as SPLT analysis in the literature). It is summarized as a sequence a these packets directions, sizes and interarrival times.

from nfstream import NFStreamer
my_streamer = NFStreamer(source="facebook.pcap",
                         # We disable both l7 dissection and statistical analysis
                         # for readability purpose.
                         n_dissections=0,
                         statistical_analysis=False,
                         splt_analysis=10)
for flow in my_streamer:
    print(flow)
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=52066,
      dst_ip='66.220.156.68',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1472393122365,
      bidirectional_last_seen_ms=1472393123665,
      bidirectional_duration_ms=1300,
      bidirectional_packets=19,
      bidirectional_bytes=5745,
      src2dst_first_seen_ms=1472393122365,
      src2dst_last_seen_ms=1472393123408,
      src2dst_duration_ms=1043,
      src2dst_packets=9,
      src2dst_bytes=1345,
      dst2src_first_seen_ms=1472393122668,
      dst2src_last_seen_ms=1472393123665,
      dst2src_duration_ms=997,
      dst2src_packets=10,
      dst2src_bytes=4400,
      # The sequence of 10 first packet direction, size and inter arrival time.
      splt_direction=[0, 1, 0, 0, 1, 1, 0, 1, 0, 1],
      splt_ps=[74, 74, 66, 262, 66, 1454, 66, 1454, 66, 463],
      splt_piat_ms=[0, 303, 0, 0, 313, 0, 0, 0, 0, 1])

Pandas export interface

NFStream natively supports Pandas as export interface.

# See documentation for more details.
# https://www.nfstream.org/docs/api#pandas-dataframe-conversion
from nfstream import NFStreamer
my_dataframe = NFStreamer(source='teams.pcap').to_pandas()[["src_ip",
                                                            "src_port",
                                                            "dst_ip", 
                                                            "dst_port", 
                                                            "protocol",
                                                            "bidirectional_packets",
                                                            "bidirectional_bytes",
                                                            "application_name"]]
my_dataframe.head(5)

Pandas

CSV export interface

NFStream natively supports CSV file format as export interface.

# See documentation for more details.
# https://www.nfstream.org/docs/api#csv-file-conversion
flows_count = NFStreamer(source='facebook.pcap').to_csv(path=None,
                                                        flows_per_file=0,
                                                        columns_to_anonymize=[])

Extending NFStream

Didn't find a specific flow feature? add a plugin to NFStream in few lines:

from nfstream import NFPlugin

class MyCustomFeature(NFPlugin):
    def on_init(self, packet, flow):
        # flow creation with the first packet
        if packet.raw_size == self.custom_size:
            flow.udps.packet_with_custom_size = 1
        else:
            flow.udps.packet_with_custom_size = 0

    def on_update(self, packet, flow):
        # flow update with each packet belonging to the flow 
        if packet.raw_size == self.custom_size:
            flow.udps.packet_with_custom_size += 1


extended_streamer = NFStreamer(source='facebook.pcap', 
                               udps=MyCustomFeature(custom_size=555))

for flow in extended_streamer:
    # see your dynamically created metric in generated flows
    print(flow.udps.packet_with_custom_size) 

Machine Learning models training and deployment

In the following example, we demonstrate a simplistic machine learning approach training and deployment. We suppose that we want to run a classification of Social Network category flows based on bidirectional_packets and bidirectional_bytes as features. For the sake of brevity, we decide to predict only at flow expiration stage.

Training the model

from nfstream import NFPlugin, NFStreamer
import numpy
from sklearn.ensemble import RandomForestClassifier

df = NFStreamer(source="training_traffic.pcap").to_pandas()
X = df[["bidirectional_packets", "bidirectional_bytes"]]
y = df["application_category_name"].apply(lambda x: 1 if 'SocialNetwork' in x else 0)
model = RandomForestClassifier()
model.fit(X, y)

ML powered streamer on live traffic

class ModelPrediction(NFPlugin):
    def on_init(self, packet, flow):
        flow.udps.model_prediction = 0
    def on_expire(self, flow):
        # You can do the same in on_update entrypoint and force expiration with custom id. 
        to_predict = numpy.array([flow.bidirectional_packets,
                                  flow.bidirectional_bytes]).reshape((1,-1))
        flow.udps.model_prediction = self.my_model.predict(to_predict)

ml_streamer = NFStreamer(source="eth0", udps=ModelPrediction(my_model=model))
for flow in ml_streamer:
    print(flow.udps.model_prediction)

More NFPlugin examples and details are provided on the official documentation. You can also test NFStream without installation using our live demo notebook.

Building from sources l m

If you want to build NFStream from sources. Please read the installation guide.

Contributing

Please read Contributing for details on our code of conduct, and the process for submitting pull requests to us.

Ethics

NFStream is intended for network data research and forensics. Researchers and network data scientists can use these framework to build reliable datasets, train and evaluate network applied machine learning models. As with any packet monitoring tool, NFStream could potentially be misused. Do not run it on any network of which you are not the owner or the administrator.

Credits

Authors

The following people contributed to NFStream:

Supporting organizations

The following organizations are supporting NFStream:

sah tuke ntop

License

This project is licensed under the LGPLv3 License - see the License file for details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nfstream-6.3.0-pp37-pypy37_pp73-macosx_10_14_x86_64.whl (1.0 MB view details)

Uploaded PyPy macOS 10.14+ x86-64

nfstream-6.3.0-pp36-pypy36_pp73-macosx_10_14_x86_64.whl (1.0 MB view details)

Uploaded PyPy macOS 10.14+ x86-64

nfstream-6.3.0-cp39-cp39-manylinux1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9

nfstream-6.3.0-cp39-cp39-macosx_10_14_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

nfstream-6.3.0-cp38-cp38-manylinux1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8

nfstream-6.3.0-cp38-cp38-macosx_10_14_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

nfstream-6.3.0-cp37-cp37m-manylinux1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.7m

nfstream-6.3.0-cp37-cp37m-macosx_10_14_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

nfstream-6.3.0-cp36-cp36m-manylinux1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.6m

nfstream-6.3.0-cp36-cp36m-macosx_10_14_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file nfstream-6.3.0-pp37-pypy37_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: nfstream-6.3.0-pp37-pypy37_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 PyPy/7.3.4

File hashes

Hashes for nfstream-6.3.0-pp37-pypy37_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7c00c6cec16e760a0c855708e03eec2e273f2df09ae09e332bf59e15e5eaa433
MD5 f1225050a370a31523a84a9613146c15
BLAKE2b-256 0303ff64922dd608a4c86a08b77ab7fe1366d800fb9995db0579a931b0de233e

See more details on using hashes here.

File details

Details for the file nfstream-6.3.0-pp37-pypy37_pp73-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: nfstream-6.3.0-pp37-pypy37_pp73-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: PyPy, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 PyPy/7.3.4

File hashes

Hashes for nfstream-6.3.0-pp37-pypy37_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c182c56cd7f1fffeece8728a2ba60791acafc5538404c675d1ad8c1c830ac94b
MD5 945c7190f6d5c473ba0faf0101c08308
BLAKE2b-256 d72cbf041ab29a69b04bb965a3e3bec90691cd3fb6abd74369466cc40058e32c

See more details on using hashes here.

File details

Details for the file nfstream-6.3.0-pp36-pypy36_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: nfstream-6.3.0-pp36-pypy36_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 PyPy/7.3.3

File hashes

Hashes for nfstream-6.3.0-pp36-pypy36_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e3628aceccf5f4d0394ec3770d411c0eb88ac76703efd24545bf03b7426a8366
MD5 519246d7a5df25eab11dbfa5ae553bee
BLAKE2b-256 5f67d43f29c6431808cb31b4ebdd6f260bc3348fa0f0da92d199231017de3bf0

See more details on using hashes here.

File details

Details for the file nfstream-6.3.0-pp36-pypy36_pp73-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: nfstream-6.3.0-pp36-pypy36_pp73-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: PyPy, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 PyPy/7.3.3

File hashes

Hashes for nfstream-6.3.0-pp36-pypy36_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d7551699ba9eac809ef50f8013b112755d6217fba7f76d55c385e4adf0fad997
MD5 1be642f5f3e1e239f2a577f1d1071321
BLAKE2b-256 744b2dfa853118a22887f9ab7002b99731e774ef8f6b0f9c0103f8d0dec9570c

See more details on using hashes here.

File details

Details for the file nfstream-6.3.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: nfstream-6.3.0-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for nfstream-6.3.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 88cf1c8397e2dcee806e0fb1570fac2ae1df6a2bfacb316a854d6af93746da13
MD5 6266b65730148cdcda6db54ec3db7306
BLAKE2b-256 4a8f69549c007f8f666714c36bfbe151a2baf683f9c3e50cf6a696c8286ef990

See more details on using hashes here.

File details

Details for the file nfstream-6.3.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: nfstream-6.3.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for nfstream-6.3.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 32c823681aaeeaf46a0cf03736abcdf3b6e40857909d858af2469cbc590d16cb
MD5 ee79f53d5f2052906bcb22f8be183445
BLAKE2b-256 ee8698258b5c4e31c6807869f8d416544de7d64e6fb04381b5784936befeb4f2

See more details on using hashes here.

File details

Details for the file nfstream-6.3.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: nfstream-6.3.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for nfstream-6.3.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fdad1b03bd3e5237bf14647184906190ead04a02d1b2447d374f11f4e07fa98c
MD5 7ffde5bed3d994d08da480f176fb0a6a
BLAKE2b-256 2bd7cba417c00287d6235c4b5dd65dd489aa606b832a96f992f31b74fcc6681e

See more details on using hashes here.

File details

Details for the file nfstream-6.3.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: nfstream-6.3.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for nfstream-6.3.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 74712262bd14fa0115ce9220357144754efc22ccdab93b3a597a272a9636fc11
MD5 14791cfb61cc89707885aa1382cc2025
BLAKE2b-256 ede6219919adb50bb48fbd040f8048ef5bcd85370b9235fb995d064926fe5840

See more details on using hashes here.

File details

Details for the file nfstream-6.3.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nfstream-6.3.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for nfstream-6.3.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 02073a662240f0ecfe13ac0200933afe26b6a58efe986660273054263e0e7cae
MD5 ab7b07f8299ab22202fed00aa6074b9b
BLAKE2b-256 4a84f68f795161990d51e0c62c41b0126fe4cf847262a6364a42f8d6ff32807e

See more details on using hashes here.

File details

Details for the file nfstream-6.3.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: nfstream-6.3.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for nfstream-6.3.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9bc40d497f22c9a22f6e4699072768deb986411d6da6dfa32c84d9586df96c91
MD5 0f98fb323f7fd31cbb81e4da65773e8d
BLAKE2b-256 4427b99e5d164b8fc10966ccb02087a30a547959ecd3502220c9239c55f8c95f

See more details on using hashes here.

File details

Details for the file nfstream-6.3.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: nfstream-6.3.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.6.13

File hashes

Hashes for nfstream-6.3.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9202969d89007d89621cb250d3ee81c02483366ce1732db15216424e01b6e0e6
MD5 7b78dbed2c71d8d4088b5dd8c64868a1
BLAKE2b-256 2181dfc79319ed52e5332bc6b84195d76c362c514ca92845d9bc0747ce947601

See more details on using hashes here.

File details

Details for the file nfstream-6.3.0-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: nfstream-6.3.0-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.6.13

File hashes

Hashes for nfstream-6.3.0-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4717cf526594de7a6c57310114d10983d7693c456c5f77229b694a3f6f9a4a59
MD5 192d0dab2dea6d8ce16443b8684309df
BLAKE2b-256 b862b47615c6d68078002c212de93ec95774e4b9a5a7e63a44466ca11dadebd6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page