Skip to main content

A Flexible Network Data Analysis Framework

Project description

NFStream Logo


NFStream is a multiplatform Python framework providing fast, flexible, and expressive data structures designed to make working with online or offline network data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world network data analysis in Python. Additionally, it has the broader goal of becoming a common network data analytics framework for researchers providing data reproducibility across experiments.

Live Notebook live notebook
Project Website website
Discussion Channel Gitter
Latest Release latest release
Supported Versions python3 pypy3
Project License License
Continuous Integration Linux WorkFlows MacOS WorkFlows Windows WorkFlows ARM64 WorkFlows ARM32 WorkFlows
Code Quality Quality Quality
Code Coverage Coverage Fuzzing

Table of Contents

Main Features

  • Performance: NFStream is designed to be fast: AF_PACKETV3/FANOUT on Linux, parallel processing, native C (using CFFI) for critical computation and PyPy support.
  • Encrypted layer-7 visibility: NFStream deep packet inspection is based on nDPI. It allows NFStream to perform reliable encrypted applications identification and metadata fingerprinting (e.g. TLS, SSH, DHCP, HTTP).
  • System visibility: NFStream probes the monitored system's kernel to obtain information on open Internet sockets and collects guaranteed ground-truth (process name, PID, etc.) at the application level.
  • Statistical features extraction: NFStream provides state of the art of flow-based statistical feature extraction. It includes both post-mortem statistical features (e.g. min, mean, stddev and max of packet size and inter arrival time) and early flow features (e.g. sequence of first n packets sizes, inter arrival times and directions).
  • Flexibility: NFStream is easily extensible using NFPlugins. It allows to create a new feature within a few lines of Python.
  • Machine Learning oriented: NFStream aims to make Machine Learning Approaches for network traffic management reproducible and deployable. By using NFStream as a common framework, researchers ensure that models are trained using the same feature computation logic and thus, a fair comparison is possible. Moreover, trained models can be deployed and evaluated on live network using NFPlugins.

How to get it?

Binary installers for the latest released version are available on Pypi.

pip install nfstream

Windows Notes: NFStream does not include capture drivers on Windows. It is required to install Npcap drivers before installing NFStream. If Wireshark is already installed on Windows, then Npcap drivers are already installed.

How to use it?

Encrypted application identification and metadata extraction

Dealing with a big pcap file and just want to aggregate into labeled network flows? NFStream make this path easier in few lines:

from nfstream import NFStreamer
# We display all streamer parameters with their default values.
# See documentation for detailed information about each parameter.
# https://www.nfstream.org/docs/api#nfstreamer
my_streamer = NFStreamer(source="facebook.pcap", # or network interface
                         decode_tunnels=True,
                         bpf_filter=None,
                         promiscuous_mode=True,
                         snapshot_length=1536,
                         idle_timeout=120,
                         active_timeout=1800,
                         accounting_mode=0,
                         udps=None,
                         n_dissections=20,
                         statistical_analysis=False,
                         splt_analysis=0,
                         n_meters=0,
                         performance_report=0,
                         system_visibility_mode=0,
                         system_visibility_poll_ms=100,
                         system_visibility_extension_port=28314)
                         
for flow in my_streamer:
    print(flow)  # print it.
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=52066,
      dst_ip='66.220.156.68',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1472393122365,
      bidirectional_last_seen_ms=1472393123665,
      bidirectional_duration_ms=1300,
      bidirectional_packets=19,
      bidirectional_bytes=5745,
      src2dst_first_seen_ms=1472393122365,
      src2dst_last_seen_ms=1472393123408,
      src2dst_duration_ms=1043,
      src2dst_packets=9,
      src2dst_bytes=1345,
      dst2src_first_seen_ms=1472393122668,
      dst2src_last_seen_ms=1472393123665,
      dst2src_duration_ms=997,
      dst2src_packets=10,
      dst2src_bytes=4400,
      application_name='TLS.Facebook',
      application_category_name='SocialNetwork',
      application_is_guessed=0,
      application_confidence=4,
      requested_server_name='facebook.com',
      client_fingerprint='bfcc1a3891601edb4f137ab7ab25b840',
      server_fingerprint='2d1eb5817ece335c24904f516ad5da12',
      user_agent='',
      content_type='')

System visibility

NFStream probes the monitored system's kernel to obtain information on open Internet sockets and collects guaranteed ground-truth (process name, PID, etc.) at the application level.

from nfstream import NFStreamer
my_streamer = NFStreamer(source="Intel(R) Wi-Fi 6 AX200 160MHz", # Live capture mode. 
                         # Disable L7 dissection for readability purpose only.
                         n_dissections=0,
                         system_visibility_poll_ms=100,
                         system_visibility_mode=1)
                         
for flow in my_streamer:
    print(flow)  # print it.
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=59339,
      dst_ip='184.73.244.37',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1638966705265,
      bidirectional_last_seen_ms=1638966706999,
      bidirectional_duration_ms=1734,
      bidirectional_packets=98,
      bidirectional_bytes=424464,
      src2dst_first_seen_ms=1638966705265,
      src2dst_last_seen_ms=1638966706999,
      src2dst_duration_ms=1734,
      src2dst_packets=22,
      src2dst_bytes=2478,
      dst2src_first_seen_ms=1638966705345,
      dst2src_last_seen_ms=1638966706999,
      dst2src_duration_ms=1654,
      dst2src_packets=76,
      dst2src_bytes=421986,
      # The process that generated this reported flow. 
      system_process_pid=14596,
      system_process_name='FortniteClient-Win64-Shipping.exe')

Post-mortem statistical flow features extraction

NFStream performs 48 post mortem flow statistical features extraction which include detailed TCP flags analysis, minimum, mean, maximum and standard deviation of both packet size and interarrival time in each direction.

from nfstream import NFStreamer
my_streamer = NFStreamer(source="facebook.pcap",
                         # Disable L7 dissection for readability purpose.
                         n_dissections=0,  
                         statistical_analysis=True)
for flow in my_streamer:
    print(flow)
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=52066,
      dst_ip='66.220.156.68',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1472393122365,
      bidirectional_last_seen_ms=1472393123665,
      bidirectional_duration_ms=1300,
      bidirectional_packets=19,
      bidirectional_bytes=5745,
      src2dst_first_seen_ms=1472393122365,
      src2dst_last_seen_ms=1472393123408,
      src2dst_duration_ms=1043,
      src2dst_packets=9,
      src2dst_bytes=1345,
      dst2src_first_seen_ms=1472393122668,
      dst2src_last_seen_ms=1472393123665,
      dst2src_duration_ms=997,
      dst2src_packets=10,
      dst2src_bytes=4400,
      bidirectional_min_ps=66,
      bidirectional_mean_ps=302.36842105263156,
      bidirectional_stddev_ps=425.53315715259754,
      bidirectional_max_ps=1454,
      src2dst_min_ps=66,
      src2dst_mean_ps=149.44444444444446,
      src2dst_stddev_ps=132.20354676701294,
      src2dst_max_ps=449,
      dst2src_min_ps=66,
      dst2src_mean_ps=440.0,
      dst2src_stddev_ps=549.7164925870628,
      dst2src_max_ps=1454,
      bidirectional_min_piat_ms=0,
      bidirectional_mean_piat_ms=72.22222222222223,
      bidirectional_stddev_piat_ms=137.34994188549086,
      bidirectional_max_piat_ms=398,
      src2dst_min_piat_ms=0,
      src2dst_mean_piat_ms=130.375,
      src2dst_stddev_piat_ms=179.72036811192467,
      src2dst_max_piat_ms=415,
      dst2src_min_piat_ms=0,
      dst2src_mean_piat_ms=110.77777777777777,
      dst2src_stddev_piat_ms=169.51458475436397,
      dst2src_max_piat_ms=409,
      bidirectional_syn_packets=2,
      bidirectional_cwr_packets=0,
      bidirectional_ece_packets=0,
      bidirectional_urg_packets=0,
      bidirectional_ack_packets=18,
      bidirectional_psh_packets=9,
      bidirectional_rst_packets=0,
      bidirectional_fin_packets=0,
      src2dst_syn_packets=1,
      src2dst_cwr_packets=0,
      src2dst_ece_packets=0,
      src2dst_urg_packets=0,
      src2dst_ack_packets=8,
      src2dst_psh_packets=4,
      src2dst_rst_packets=0,
      src2dst_fin_packets=0,
      dst2src_syn_packets=1,
      dst2src_cwr_packets=0,
      dst2src_ece_packets=0,
      dst2src_urg_packets=0,
      dst2src_ack_packets=10,
      dst2src_psh_packets=5,
      dst2src_rst_packets=0,
      dst2src_fin_packets=0)

Early statistical flow features extraction

NFStream performs early (up to 255 packets) flow statistical features extraction (also referred as SPLT analysis in the literature). It is summarized as a sequence a these packets directions, sizes and interarrival times.

from nfstream import NFStreamer
my_streamer = NFStreamer(source="facebook.pcap",
                         # We disable l7 dissection for readability purpose.
                         n_dissections=0,
                         splt_analysis=10)
for flow in my_streamer:
    print(flow)
# See documentation for each feature detailed description.
# https://www.nfstream.org/docs/api#nflow
NFlow(id=0,
      expiration_id=0,
      src_ip='192.168.43.18',
      src_mac='30:52:cb:6c:9c:1b',
      src_oui='30:52:cb',
      src_port=52066,
      dst_ip='66.220.156.68',
      dst_mac='98:0c:82:d3:3c:7c',
      dst_oui='98:0c:82',
      dst_port=443,
      protocol=6,
      ip_version=4,
      vlan_id=0,
      tunnel_id=0,
      bidirectional_first_seen_ms=1472393122365,
      bidirectional_last_seen_ms=1472393123665,
      bidirectional_duration_ms=1300,
      bidirectional_packets=19,
      bidirectional_bytes=5745,
      src2dst_first_seen_ms=1472393122365,
      src2dst_last_seen_ms=1472393123408,
      src2dst_duration_ms=1043,
      src2dst_packets=9,
      src2dst_bytes=1345,
      dst2src_first_seen_ms=1472393122668,
      dst2src_last_seen_ms=1472393123665,
      dst2src_duration_ms=997,
      dst2src_packets=10,
      dst2src_bytes=4400,
      # The sequence of 10 first packet direction, size and inter arrival time.
      splt_direction=[0, 1, 0, 0, 1, 1, 0, 1, 0, 1],
      splt_ps=[74, 74, 66, 262, 66, 1454, 66, 1454, 66, 463],
      splt_piat_ms=[0, 303, 0, 0, 313, 0, 0, 0, 0, 1])

Pandas export interface

NFStream natively supports Pandas as export interface.

# See documentation for more details.
# https://www.nfstream.org/docs/api#pandas-dataframe-conversion
from nfstream import NFStreamer
my_dataframe = NFStreamer(source='teams.pcap').to_pandas()[["src_ip",
                                                            "src_port",
                                                            "dst_ip", 
                                                            "dst_port", 
                                                            "protocol",
                                                            "bidirectional_packets",
                                                            "bidirectional_bytes",
                                                            "application_name"]]
my_dataframe.head(5)

Pandas

CSV export interface

NFStream natively supports CSV file format as export interface.

# See documentation for more details.
# https://www.nfstream.org/docs/api#csv-file-conversion
flows_count = NFStreamer(source='facebook.pcap').to_csv(path=None,
                                                        columns_to_anonymize=(),
                                                        flows_per_file=0,
                                                        rotate_files=0)

Extending NFStream

Didn't find a specific flow feature? add a plugin to NFStream in few lines:

from nfstream import NFPlugin
    
class MyCustomFeature(NFPlugin):
    def on_init(self, packet, flow):
        # flow creation with the first packet
        if packet.raw_size == self.custom_size:
            flow.udps.packet_with_custom_size = 1
        else:
            flow.udps.packet_with_custom_size = 0
	
    def on_update(self, packet, flow):
        # flow update with each packet belonging to the flow 
        if packet.raw_size == self.custom_size:
            flow.udps.packet_with_custom_size += 1


extended_streamer = NFStreamer(source='facebook.pcap', 
                               udps=MyCustomFeature(custom_size=555))

for flow in extended_streamer:
    # see your dynamically created metric in generated flows
    print(flow.udps.packet_with_custom_size) 

Machine Learning models training and deployment

In the following example, we demonstrate a simplistic machine learning approach training and deployment. We suppose that we want to run a classification of Social Network category flows based on bidirectional_packets and bidirectional_bytes as features. For the sake of brevity, we decide to predict only at flow expiration stage.

Training the model

from nfstream import NFPlugin, NFStreamer
import numpy
from sklearn.ensemble import RandomForestClassifier

df = NFStreamer(source="training_traffic.pcap").to_pandas()
X = df[["bidirectional_packets", "bidirectional_bytes"]]
y = df["application_category_name"].apply(lambda x: 1 if 'SocialNetwork' in x else 0)
model = RandomForestClassifier()
model.fit(X, y)

ML powered streamer on live traffic

class ModelPrediction(NFPlugin):
    def on_init(self, packet, flow):
        flow.udps.model_prediction = 0
    def on_expire(self, flow):
        # You can do the same in on_update entrypoint and force expiration with custom id. 
        to_predict = numpy.array([flow.bidirectional_packets,
                                  flow.bidirectional_bytes]).reshape((1,-1))
        flow.udps.model_prediction = self.my_model.predict(to_predict)

ml_streamer = NFStreamer(source="eth0", udps=ModelPrediction(my_model=model))
for flow in ml_streamer:
    print(flow.udps.model_prediction)

More NFPlugin examples and details are provided on the official documentation. You can also test NFStream without installation using our live demo notebook.

Building from sources l m w

If you want to build NFStream from sources. Please read the installation guide.

Contributing

Please read Contributing for details on our code of conduct, and the process for submitting pull requests to us.

Ethics

NFStream is intended for network data research and forensics. Researchers and network data scientists can use these framework to build reliable datasets, train and evaluate network applied machine learning models. As with any packet monitoring tool, NFStream could potentially be misused. Do not run it on any network of which you are not the owner or the administrator.

Credits

Citation

NFStream paper is published in Computer Networks (COMNET). If you use NFStream in a scientific publication, we would appreciate citations to the following paper:

@article{AOUINI2022108719,
  title = {NFStream: A flexible network data analysis framework},
  author = {Aouini, Zied and Pekar, Adrian},
  doi = {10.1016/j.comnet.2021.108719},
  issn = {1389-1286},
  journal = {Computer Networks},
  pages = {108719},
  year = {2022},
  publisher = {Elsevier},
  volume = {204},
  url = {https://www.sciencedirect.com/science/article/pii/S1389128621005739}
}

Authors

The following people contributed to NFStream:

Supporting organizations

The following organizations are supporting NFStream:

sah tuke ntop nmap

Publications that use NFStream

License

This project is licensed under the LGPLv3 License - see the License file for details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nfstream-6.5.2-pp39-pypy39_pp73-win_amd64.whl (734.1 kB view details)

Uploaded PyPy Windows x86-64

nfstream-6.5.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nfstream-6.5.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

nfstream-6.5.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (723.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nfstream-6.5.2-pp38-pypy38_pp73-win_amd64.whl (734.1 kB view details)

Uploaded PyPy Windows x86-64

nfstream-6.5.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nfstream-6.5.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

nfstream-6.5.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (723.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nfstream-6.5.2-pp37-pypy37_pp73-win_amd64.whl (734.1 kB view details)

Uploaded PyPy Windows x86-64

nfstream-6.5.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nfstream-6.5.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

nfstream-6.5.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (723.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nfstream-6.5.2-cp311-cp311-win_amd64.whl (738.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

nfstream-6.5.2-cp311-cp311-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

nfstream-6.5.2-cp311-cp311-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

nfstream-6.5.2-cp311-cp311-musllinux_1_1_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

nfstream-6.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nfstream-6.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

nfstream-6.5.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.2-cp311-cp311-macosx_11_0_arm64.whl (100.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

nfstream-6.5.2-cp311-cp311-macosx_10_9_x86_64.whl (741.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

nfstream-6.5.2-cp310-cp310-win_amd64.whl (738.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

nfstream-6.5.2-cp310-cp310-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

nfstream-6.5.2-cp310-cp310-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

nfstream-6.5.2-cp310-cp310-musllinux_1_1_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

nfstream-6.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nfstream-6.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

nfstream-6.5.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.2-cp310-cp310-macosx_11_0_arm64.whl (100.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

nfstream-6.5.2-cp310-cp310-macosx_10_9_x86_64.whl (741.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

nfstream-6.5.2-cp39-cp39-win_amd64.whl (738.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

nfstream-6.5.2-cp39-cp39-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

nfstream-6.5.2-cp39-cp39-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

nfstream-6.5.2-cp39-cp39-musllinux_1_1_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

nfstream-6.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nfstream-6.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

nfstream-6.5.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.2-cp39-cp39-macosx_11_0_arm64.whl (100.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

nfstream-6.5.2-cp39-cp39-macosx_10_9_x86_64.whl (741.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nfstream-6.5.2-cp38-cp38-win_amd64.whl (738.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

nfstream-6.5.2-cp38-cp38-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

nfstream-6.5.2-cp38-cp38-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

nfstream-6.5.2-cp38-cp38-musllinux_1_1_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

nfstream-6.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nfstream-6.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

nfstream-6.5.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.2-cp38-cp38-macosx_11_0_arm64.whl (100.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

nfstream-6.5.2-cp38-cp38-macosx_10_9_x86_64.whl (741.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

nfstream-6.5.2-cp37-cp37m-win_amd64.whl (738.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

nfstream-6.5.2-cp37-cp37m-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

nfstream-6.5.2-cp37-cp37m-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

nfstream-6.5.2-cp37-cp37m-musllinux_1_1_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

nfstream-6.5.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nfstream-6.5.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

nfstream-6.5.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.2-cp37-cp37m-macosx_10_9_x86_64.whl (741.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

nfstream-6.5.2-cp36-cp36m-win_amd64.whl (742.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

nfstream-6.5.2-cp36-cp36m-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

nfstream-6.5.2-cp36-cp36m-musllinux_1_1_i686.whl (1.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

nfstream-6.5.2-cp36-cp36m-musllinux_1_1_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

nfstream-6.5.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

nfstream-6.5.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

nfstream-6.5.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nfstream-6.5.2-cp36-cp36m-macosx_10_9_x86_64.whl (741.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file nfstream-6.5.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5cad257b65a5cc933b05e0f30e5a1d2cc94b0a65b82c2d2f057f1eb80c867431
MD5 b54dcfe2c4f8bd5b5550e12a42f0f219
BLAKE2b-256 51c342d24fe553cf6ce1e927be2ecd1222a2a2ffcf2bb869ecd93fabaf892127

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 87ee0e956b6978a2be1b0f03491daa5ff5dc05c1e784db4230185f89836aaf03
MD5 87adeaf9aadea48fb7b719686df110ba
BLAKE2b-256 c54c46085baac0d07834ebceb5ce5d78e12d3e9d4f1749fc557fd45e57c9ee59

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5fcdcf068ba48f9acf334a85476c97d2293874379723854de89ae07f4d4d4566
MD5 6a6de6b25cea0ae60a562b729d74d48f
BLAKE2b-256 5ae7bf62a7f194662af2f1a0652c3fb209cb00ae59503e328abdd7fd5b4b30dd

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eec11418c02349a5cda922f26abdeda61335f0ddda8332e6c7fc0ad3528bae77
MD5 91ef92f077f7738678cf3783d2c14a9b
BLAKE2b-256 1b8f5aa948be3ca178c2d89de318b4c40ba7cc012062cbdc5d230c4c2362212e

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d47f965a994712b2cb372270bcc4c201356d652483b7645434668a953cacba75
MD5 9584e40911429ea180a2e6dcb49960a1
BLAKE2b-256 6b975d78d1efbd548545bf51f6753bb90ca358a35364dc913b29997ed1e7b325

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 01189c8ca7a551d02182f446c3b21e764dfd2d7d20176b056936f407fbcef661
MD5 2afc002d1d716c9cd0287c2d18863741
BLAKE2b-256 3bccce4fe2a7f5c97843bb71a90f5f2d9da4b7be28d4997eda6d71bea6b15281

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13169b556f54d3ae77165aec073bf8dd1c65615f45ffe0b60a357b39bd0a89ba
MD5 c4c0c8c723eeec8f85af28b0fdae3092
BLAKE2b-256 c12e27c1bbdc85193a4865d4a86913df30b509af805031264ae184f83868fbd3

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0c9bd35bd8b9cf91352d08a9645a9ae76698af9a3797b00e928db7d93f90af8
MD5 1fbcc05ad452d0f513f99e64ab02e89f
BLAKE2b-256 8fb9ed9dd8f0f186eb8a228fe0ea210c3f1c6d6b23294ecdfa8da1c17dda2479

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 632c26bdc6b55fc8e86d1b6e6c2ad0a2b21c5712628896553b7ad10a1a6b19f4
MD5 8dcc7a522bde8709297d7e1d2a87d36c
BLAKE2b-256 be06962298ebc295fe30dc633e961f6efbd9d16223614207cdb78286ee157f89

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 33733694489a1f4f34139f26ebf716e53ae00ca93bc36fc48097ef920c327acf
MD5 c5c2d646718998e6d95a143c1aa122a3
BLAKE2b-256 bfa70c90e225dcb1425c3212255fc7221abb781a065408102c4657c0a1e13299

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5dd4a86264d7c322b95d4db21106c1e2c9ec8e0da326c2a02e1ac3985bc662aa
MD5 1c8cde6ab920a5cdb03f27401f1f266b
BLAKE2b-256 0f675efbfa437a6ba1f23e25c4f34f833947c2b8d89adc8ca1f7491bc6244748

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 337c0ed3a7e47ac30bf051f3a3ace56f26c3f94f715207a5a1015030d83e3ff5
MD5 4465d7a10aec4bc11c19294a7e43f0b1
BLAKE2b-256 040321e2f6186f39c3cb3b8774c01c1eb90cedd2eb1419f821488e22c623a569

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 70e18fcde9ddc5bfa2161d379c64526b6a43922f3779c6cbc16910d04182f1d9
MD5 38b98fa755ff0a23893e4c98c73e0352
BLAKE2b-256 7622faf1b2d31a8db98708fed2c876e589ebc6f25975e78eeeccae24e28a9852

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 412eb7b891adcc0e97887812bdd43f3ba587370d1d618e49309021ae5a3dd44e
MD5 80384075d318ea95e29139fb25ab3d12
BLAKE2b-256 87dfaa0efe263f6685811e29897a267f0a1c481bf2e7b1acd0c02d41a2eb3b69

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 82168aa3298b0a618d3af2c682b3e3b30d4828052c701f7bf39f7e77bc14acec
MD5 a4dcf8bca2a8813ab073752ba7871d9d
BLAKE2b-256 7eb7fa2e657979a60c1ccd95d2763e3c4b102d7bfd2686fb9192f2fc990f34f6

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 738.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 471bf0ea4c44715d272d5b9a0fc79d77d7b4b15940f6275cbf58251650cbf13e
MD5 a49997a3dcd08154d9e8f6da6f31c4d9
BLAKE2b-256 3aa815007e5c11dc683bc330a2b0ff833cdfffeb65db7c4db4134b98fde96779

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 802fb0b7f675acdab1ff22812d5b87b6fce1336ed23ed2661bcff4d69de19be4
MD5 8bd1e3a013b30e030e8542162630024b
BLAKE2b-256 7835f80c42a95e5ec5197878cfa6495af37eaf70d72cc2ddb50497527ecc3f0b

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0c64ae7260b459018764b73cd6e13db93d1f7e0208dfa2bc71fc0e3a180a34f0
MD5 b5c8a3158935b906eb0ec208f5f4732a
BLAKE2b-256 6c2c3a4050e43892aeed0e042cfe8ea82578580611478cd3ef99023e5e902cb5

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f57363ec4b761ca5152c067ba05afbc217164d8f34e7ba5c86f3caae78ead5f0
MD5 bd49bd436a9dba6c19544174f8238d47
BLAKE2b-256 5bdb238a72adc3588eb9b9f1164072b0c1b8d443e3a587237d4bfa1a1140e594

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98e8b67a0036dc817c84cf1b85a6ea83acd382fd4645f416e30c0576021c55d5
MD5 4ea3ef65ec5f2c45c166f08e46d77c3d
BLAKE2b-256 81f1aeab0d9467553da19f0de47b16395dc612a8adcd8b3c18dddbf663791d9a

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4999494baec187e3b41e9d659b5dcc13fb1770a909d1acd4fe0b2158760a426d
MD5 519a27c7bd3e7972fae5d716c35cefab
BLAKE2b-256 153e38645589e730b3746850c543950a51bc9e0f96470ae5e86a6f10d6d13e57

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a430a9558481366092c55f7717cc7f6c89da6db154809c77224450e7c456f7cc
MD5 204040b0c584f6f6a5884a22539ef899
BLAKE2b-256 d99629e95d1d516ed4aaed82c09c71054d08cd0e5b8720920d42868a07685be6

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b8a9677f9f03b4ed01e2a82dcab1af01a03354035aeeff587d4f282373a5ef94
MD5 9684c5658bc1e7f175abaeea4b751dd3
BLAKE2b-256 cebacb31a097901d057196b695c6887ccff0c0af469e294bdeb5cf2976301543

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3a82c50bd3e037aa417d83c918e271dfe9b840c96a7f5ee85a9be449352d9dc5
MD5 8c41e99b6ac9d1328004b8921c015ab2
BLAKE2b-256 92be0d0eb059521a4c2e3ae28771e2dcc8c2da68dde571d9f2afde0ec1b6198d

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 738.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 29ce6a5be6ebcb64476d34d4c1e13f13be4c55443b2a6e3632ab7daddc225c03
MD5 7d9b86a6168674a0529e67c6d1279617
BLAKE2b-256 1f863c439ec5e2c5ce129ec61d73cf2c20f62fe169a728642de441a930c00476

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f1b4eb991fc122647e921b89be5b01b94a52f32aba3b98e3f423f90779453490
MD5 a5f86f40e73278e60618936bae47e5f1
BLAKE2b-256 9306b72b02bf729bcc0a7b4a416f9f488dbfb88e201e4569d2ec4d0aa0f07e45

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4f286b9f957e6fa6f009998da729e703d5039be3ba73075f787402ebd070c11e
MD5 6146dfcc0d461a5a4888dc759668e196
BLAKE2b-256 4fdeaa24f007f2662638096ff49ee3719734f64e92709b03881652a78a6a73c6

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0d6f50e25ce910727eb30401ab420918ea7113ecb481e9e1c6e26261f58342e8
MD5 8a285bf796e18bd6d7f2f1f2d9111aa1
BLAKE2b-256 896aaba2e9c376557ca88e0c30d411bbb025a9507b17a271581a257c61a88681

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e9a1b583a7efdbf27235c8160f4806cbb1ddd61c1a73b52f005d6bc1e2284d44
MD5 949747358e0e98b46ae912e8c43cc991
BLAKE2b-256 ce28cf27c536f745b5174776d133b12bcb464df9ee4889bfc5409dbc7c81616f

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 483507f1b7f246d757d5db45f1f68af5b5a5e00f86f4504fb9d6e32dbe539c62
MD5 2629618f49e241f23859f1d3f4b1c4a9
BLAKE2b-256 362fb04d2b1b9c3527cf4f2e919613e229b9fea1e5b63ea2f7427ab80ec308c1

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 673a946914be47c11e16b4c490fdd6bb8241961d857528c79b3494d1431ef7eb
MD5 67afce21adc8d395cc892be684487156
BLAKE2b-256 2552debc731b43610228648cd745124fca5c5d4c31851f5fdddacdc8ceb96517

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cbb12278f7b161967c358d4162cbd214a15e0b03e4574b37a36572af2c3d61ef
MD5 6c361081382cb5210ffb1d6aed34b323
BLAKE2b-256 30066099c743fdfd96a440eae109cee864982e19ff866fe9a24d6897d9c15db9

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cc96cab983b8b48edcb0593aa077b97870f8a85a55721ebebca7e2dd7d554bb7
MD5 2810968ea7dfe8fa5ba8c525314d77e7
BLAKE2b-256 ef9eacd275cdf18bf699b73ebe8eda8d9322e91cc712163231462a5d7a3c72b9

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 738.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 249b0f92769a1ea3d81b3efa2c764a33dd62bfa09189549972f703cf848312a8
MD5 70daf70528f7400fa3ed1874cba3a2f7
BLAKE2b-256 6aaf881b9749989c9c0d75d271c469a34c7ece552518584e1ce048e72f397b19

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 02460d543059044c39d187b687d599a7f2e14cfaf891e73e63bdb6e5dc011835
MD5 2cf4458c5abca89ac45881351e6c58cb
BLAKE2b-256 bc7abd60a6cc1dc3df95c8bca738ec236a4307343f9350c72e9676edec8923f0

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6c69e4e5ceadd099662c2e127d50c97609575118742ceee3cfc1b562d2eeebf0
MD5 fba09768001fad9d5dc1524c7aca7d5c
BLAKE2b-256 8e5049f9e7cd7d54d3ca3406b5b296ff788e6cbcb171fae165c7b095e9467222

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f403874c5506055d786aa5f4233789463876f80c6613980cd10d0fd5ee0cb80d
MD5 59d6f55a3837b7d1871cd4804ca4be26
BLAKE2b-256 b9485397fa73eb126e0daeb4143363ddade0088255b79326c9adb4e777550d17

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e32a640765f02ad5c40162e5caca31d2a1744a4199fb93f4746110be9ec69209
MD5 3949371b8b8deeeb73a33cb5fa2476a5
BLAKE2b-256 8fc026fc7ad7044c6fabae37f49cbfbaaa00dfed9ab91780ecb0b6120dbdd756

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e230e8ace4b032a909e91cc444f87e2b88dc68983076500fb5c9d65007e9948f
MD5 23c876364517dbe30be7fb246cbe8c29
BLAKE2b-256 4d5f9dfaa74f6620c396d1c7d3bc93ad1efce7c5eed75893e27aa23846d008cd

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 accbfe2254ae48003f2a3269ffd665b0e987ccaac592a00c950a598ffeaf43b4
MD5 740b02b35ba7d5b2e8df01654c8851b1
BLAKE2b-256 9a788b1e888f6037f918cd7214e9e0873eb75398f8bde63ad7308e500a83dd28

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 820bb56efa576a08e53a81677ca25f00818a54d1ddab32a115f5c626ca4f00dc
MD5 90c369945b8cc9d516fc808c1cc8c32b
BLAKE2b-256 30ed88dfa3121f836dde7f01cedcac88955ef5fe6ef8b3f6015bc57c006d770f

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 97177ad3265cbf8eb51740b5877d07b23baef8733bfd96bdd0b0b031c9f55029
MD5 5c4543929c08a779d3b5396b1f6efbd3
BLAKE2b-256 871a098804a2a76796ecab3c245e1edb785a4fe1f61dda94a268ef065c3b21b0

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 738.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3465091625fafbd45995ac183535b54505557f1af995612782f3158041ccfa34
MD5 d437bd0d42c7bd79e6d759d37db46504
BLAKE2b-256 ea8488df53031d8d2d585d82250389a9a35067839aeeee9edff3853f38c87aae

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6678b0e9dcbb405cfa90a744381d550a7fa5bf8aecb3f9d3d2f5e34860032676
MD5 5d73cf93459e28ec751472b34f3c7fde
BLAKE2b-256 b6ac0ed0cd35b173b417be4bc178c0e3162666acec34186000c2f573c9fca2fa

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e29b75a1c2d0863a1060e158d19b04cbee11f5d8ced47ec27de3e0ed7ade2de5
MD5 ec5cd647eccc5c3e17694a4af259792e
BLAKE2b-256 f434a443c37b638da6e2da4ab3136b32ac00a5ab7eaee435b91572e554095a18

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 1fa786d2de32b267fec669025977695fa2b407fd581913808c6cb47613f906ca
MD5 b4593453d20f6eb51394c991431ddc44
BLAKE2b-256 0df9fb718e3b5e989f5729e702199a5edbdeed14763386d3a79d311c9d494f32

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76a05088e73391805a1125a5f2647f44cd3e1b5c0be354bfbad54c23c9241274
MD5 96bc57abdbccb69664d0a36265cf4dbc
BLAKE2b-256 ef7f5d7f6b5c1570ff833fe5db287b35a52b3646a61942f803591461a70184ac

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 910cf93c7413fd7576606eb119b0197d884eb606ad7869e592586bb591185a12
MD5 7aa26bb88f0655ea789c8c29b500d5ae
BLAKE2b-256 4638b6c7fc6407f98bb79054c7c23417f47a8225c1fb4bb74f4a797e1c23597d

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3810aa3e0bf236d86a346cd6225219c729f1679279fe0ded0e41b594940431a3
MD5 c8b87e9a21c04de16990127a3fc1ede4
BLAKE2b-256 3cbb7c2d9f9bf7d71de675d0af2f98851ca825d5d152f6279b9a4f1b7153ed58

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2fc07aae4061f8328adfec6f5e27e2294c33dd6ea345ea35528558807ba28d48
MD5 e2cf966230da53c99b1651f389c00702
BLAKE2b-256 302c70e369571144a59f93b1749a702921c469881fedd76e4ea1a97ae3f32dfa

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c5bbdcb7d6fa8e4273148b5f9825ceff9d0123db98bb6d5af3900d1ea3c39891
MD5 c8a577c53f4481c57392f6c041d80051
BLAKE2b-256 49f719e5c21ab05ba6ca2b75ed9c2b0e83f4574eb63027ba7999a91d103dcb0e

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 738.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 926358a9445ea0c24a3e7d54dcc3e9348823b1c68e01544d6a44516bfd58ef57
MD5 58df6e8beeecf82a5383b63ca05d3fd2
BLAKE2b-256 84687d1e94fb5f97e50c1cb91ad1df6738748c8d5ec08cd9d8ca69c79c4bb65c

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 eaaaed76c53b9f75312a21667f57f937d88b9bcd2b7b0c380828d53d1ae87def
MD5 9ee91a3b81b9558716fb6fbc7c61ee30
BLAKE2b-256 3e568208a66740d17af236e5c29cce28425ab64e63beb5345e0e482ecd60ff02

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e712ec1e1e8167c8853df2d4a3a4cfaf1001742ce85722ea628f1cdf80d7b22c
MD5 0d6577e4976b40a571948bf0f81601ed
BLAKE2b-256 d2bc5d46411faffed129cc7f3324f67c972cb84edd6acbdc4a50fc92604a4838

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 52b83bc4fba373f3fdd69bf691ab088450baeb439899d8f9c4f9b02366693fa0
MD5 7dffbb63f12f838cfaf7dd7a6ca6876e
BLAKE2b-256 f706cade8c88d1b2b823d67ada5f2fba90d7ffa4c3bdffa81a1d282d881f87f5

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9f94df47c14a97518b0ad69865ea4dd3b3929a9ddc32af063f1562a00eedc1f
MD5 d2fde53c39c7bddd4b6a3e76d6fa66ed
BLAKE2b-256 9fabb1016bbd830104b015be26795542362f4b5bc8a73e131ee918b9c7e53f8f

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7f7a15a6a3f82573f9db6aa1007f3a79417dc64825172b0749d72eef3c4a4d73
MD5 fb2469c0667586f382e765349cb36590
BLAKE2b-256 bdaea2d20b96615de45108da75121405e8fdebc211a8a676784090ff1a70309f

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f187e342cbbda9a4e21e223928e62a44f198aa1b098efcee91ae770ac54ee4b4
MD5 e91b98858b0709e1dab9672fa2ef8e15
BLAKE2b-256 a7fe46eec99eb135088b8b73482e87aeb76d242e9d76f0663a039cd006bdd954

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 23aa0b05710bc4935cdb4cc2dfe95d4eb7be2d588e845d27dfca82927265358e
MD5 fce2a5910421e80137526a26ce2f9ba0
BLAKE2b-256 c7da795bd3a97bcfb3738db34846d39aee8414b7f0662bcfbe7593c6c5119dce

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: nfstream-6.5.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 742.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nfstream-6.5.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 8d3094ee49f8fe921b722cc18796ecaeb96c4ed4c203f6d71ab56a2e99a61b46
MD5 4d0a59e18c0c6a1652f3726626c37289
BLAKE2b-256 88bacb257d4a0402b178194cd79d91d43455dd1422da0738ec5766d23b47f9e3

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ed5fafc7fc6d2748caa8bedd1b8073cda4244ed92606f6089123eb84d5f0c8bc
MD5 5681c795b5c624d50622ff38696d1ecf
BLAKE2b-256 6ef1d952ec076e4fdff54b60bf1d8ecd130d6779c6332694ad4ce5046cb5069f

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c604a8aa02ecfe082569b8b8054af8b4063fcbf1ca5d2ef4d7b1ff3c7c521231
MD5 26ca4422a701e7a2dcc2a553b66bb5dc
BLAKE2b-256 659d69f5d6eb58084bd684a16644f5c8e51062f618c68fd6933843065389db55

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 740d5a3becadf8758155834855cc55b6acfcffc5961d81a2fcffbdc28bf7092d
MD5 1a37dd5a3bda1c3aac18ff5bc14b7a92
BLAKE2b-256 aa3c4c181444b674184951f083ed152ba71a87eba03e824fb8f0a00f13f23f1a

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8256cfd7f36470f85990e62cb7d5962def40fad5677982141cf2afa34fef329d
MD5 d8ec8977ef0994330fec3b30a8427d36
BLAKE2b-256 e5aae3133dfa981f347b093a5b99d9170ed41c46c237145e8630f27d162f96aa

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3421e7b3b2ff97ad054290db0ed88a753c24a8ef222d9b0a1c69a61688e827f9
MD5 16840168829f7a4af5a1439d3774c021
BLAKE2b-256 5bb7f252882ce4ac2ad85405f52d1e78ebcfcbdefbbdab90ddc0086d9ae9fd17

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b4931defd21e080713503a8769a8206e58581f84dd50cdd4faddb8896267a58e
MD5 9bf3edcc592c247237abd461bae4b835
BLAKE2b-256 c3d98266f11a77e9f182bb3795278ba473c7d8fdfeb1206aeb861767e034b552

See more details on using hashes here.

File details

Details for the file nfstream-6.5.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nfstream-6.5.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2cc92fa60f4a9c87ee4c09942cbb33f8544fdefb0135505a73cf033a6629296b
MD5 1e3e907b91c19fb1666cb5aba95d027c
BLAKE2b-256 a74777a6047b8100beabec476c87f80790e3c8a753c339a8b0f20c9c8ff01adf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page