Skip to main content

Simulation software for building and analyzing arbitrary predictive coding, spiking network, and biomimetic neural systems.

Project description

Python VersionLicenseMaintenanceDocumentation StatusDOI

ngc-learn is a Python library for building, simulating, and analyzing biomimetic systems, neurobiological agents, spiking neuronal networks, predictive coding circuitry, and models that learn via biologically-plausible forms of credit assignment. This simulation toolkit is built on top of JAX and is distributed under the 3-Clause BSD license.

It is currently maintained by the Neural Adaptive Computing (NAC) laboratory.

Documentation

Official documentation, including tutorials, can be found here.

The official blog-post related to the source paper behind this software library can be found here.
You can find the related paper right here, which was selected to appear in the Nature Neuromorphic Hardware and Computing Collection in 2023 and was chosen as one of the Editors' Highlights for Applied Physics and Mathematics in 2022.

Installation

Dependencies

ngc-learn requires:

  1. Python (>=3.10)
  2. NumPy (>=1.26.0)
  3. SciPy (>=1.7.0)
  4. ngcsimlib (>=0.2.b1), (visit official page here)
  5. JAX (>= 0.4.18) (to enable GPU use, make sure to install one of the CUDA variants)

ngc-learn 1.0.beta0 and later require Python 3.10 or newer as well as ngcsimlib >=0.2.b1. ngc-learn's plotting capabilities (routines within ngclearn.utils.viz) require Matplotlib (>=3.8.0) and imageio (>=2.31.5) and both plotting and density estimation tools (routines within ngclearn.utils.density) will require Scikit-learn (>=0.24.2). Many of the tutorials will require Matplotlib (>=3.8.0), imageio (>=2.31.5), and Scikit-learn (>=0.24.2).

User Installation

Setup: The easiest way to install ngc-learn (CPU version) is through pip:

$ python install ngclearn

The documentation includes more detailed installation instructions. Note that this library was developed on Ubuntu 20.04 and tested on Ubuntu(s) 18.04 and 20.04.

If the installation was successful, you should see the following if you test it against your Python interpreter, i.e., run the $ python command and complete the following sequence of steps as depicted in the screenshot below:

Note: For access to the previous Tensorflow-2 version of ngc-learn (of which we no longer support), please visit the repo for ngc-learn-legacy.

Attribution:

If you use this code in any form in your project(s), please cite its source paper (as well as ngc-learn's official software citation):

@article{Ororbia2022,
  author={Ororbia, Alexander and Kifer, Daniel},
  title={The neural coding framework for learning generative models},
  journal={Nature Communications},
  year={2022},
  month={Apr},
  day={19},
  volume={13},
  number={1},
  pages={2064},
  issn={2041-1723},
  doi={10.1038/s41467-022-29632-7},
  url={https://doi.org/10.1038/s41467-022-29632-7}
}

Development:

We warmly welcome community contributions to this project. For details on how to make a contribution to ngc-learn, please see our contributing guidelines.

Source Code You can check/pull the latest source code for this library via:

$ git clone https://github.com/NACLab/ngc-learn.git

If you are working on and developing with ngc-learn pulled from the github repo, then run the following command to set up an editable install:

$ python install -e .

Version:
1.0.0-Beta

Author: Alexander G. Ororbia II
Director, Neural Adaptive Computing (NAC) Laboratory
Rochester Institute of Technology, Department of Computer Science

Copyright:

Copyright (C) 2021 The Neural Adaptive Computing Laboratory - All Rights Reserved
You may use, distribute and modify this code under the terms of the BSD 3-clause license.

You should have received a copy of the BSD 3-clause license with this software.
If not, please email us

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ngclearn-1.0b0.tar.gz (38.4 kB view details)

Uploaded Source

Built Distribution

ngclearn-1.0b0-py3-none-any.whl (58.6 kB view details)

Uploaded Python 3

File details

Details for the file ngclearn-1.0b0.tar.gz.

File metadata

  • Download URL: ngclearn-1.0b0.tar.gz
  • Upload date:
  • Size: 38.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.4

File hashes

Hashes for ngclearn-1.0b0.tar.gz
Algorithm Hash digest
SHA256 dafc7138f7a09d971bbe3286c4b2e7db577c8ae9fe4cd699a8130ae918d00966
MD5 903c436fbbf1178edf62615c199c433d
BLAKE2b-256 375c87760134e7f2cf4077cc16cb945dd64016d3b9ca05b3bee6fa4d1c11c263

See more details on using hashes here.

File details

Details for the file ngclearn-1.0b0-py3-none-any.whl.

File metadata

  • Download URL: ngclearn-1.0b0-py3-none-any.whl
  • Upload date:
  • Size: 58.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.4

File hashes

Hashes for ngclearn-1.0b0-py3-none-any.whl
Algorithm Hash digest
SHA256 b3ca9082adfa1b8d1ca06322098e9de3e6cd6d0032970977700055ab7fa2747b
MD5 c7e37e9ea9cf6406de4128a951ccf57c
BLAKE2b-256 2d6aa294f35df6c4c0232cc08350051f8a15732eea389604e05ed5fbc40a1952

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page