Skip to main content

NebulaGraph Data Intelligence Suite

Project description

NebulaGraph Data Intelligence Suite(ngdi)

Data Intelligence Suite with 4 line code to run Graph Algo on NebulaGraph

License PyPI version Python pdm-managed


Documentation: https://github.com/wey-gu/nebulagraph-di#documentation

Source Code: https://github.com/wey-gu/nebulagraph-di


NebulaGraph Data Intelligence Suite for Python (ngdi) is a powerful Python library that offers APIs for data scientists to effectively read, write, analyze, and compute data in NebulaGraph.

With the support of single-machine engine(NetworkX), or distributed computing environment using Spark we could perform Graph Analysis and Algorithms on top of NebulaGraph in less than 10 lines of code, in unified and intuitive API.

Quick Start in 5 Minutes

Installation

pip install ngdi

Usage

Call from nGQL

See more details in docs

RETURN ngdi("pagerank", ["follow"], ["degree"], "spark",
    {space: "basketballplayer", max_iter: 10}, {write_mode: "insert"})

Spark Engine Examples

See also: examples/spark_engine.ipynb

Run Algorithm on top of NebulaGraph:

Note, there is also query mode, refer to examples or docs for more details.

from ngdi import NebulaReader

# read data with spark engine, scan mode
reader = NebulaReader(engine="spark")
reader.scan(edge="follow", props="degree")
df = reader.read()

# run pagerank algorithm
pr_result = df.algo.pagerank(reset_prob=0.15, max_iter=10)

Write back to NebulaGraph:

from ngdi import NebulaWriter
from ngdi.config import NebulaGraphConfig

config = NebulaGraphConfig()

properties = {"louvain": "cluster_id"}

writer = NebulaWriter(
    data=df_result, sink="nebulagraph_vertex", config=config, engine="spark")
writer.set_options(
    tag="louvain", vid_field="_id", properties=properties,
    batch_size=256, write_mode="insert",)
writer.write()

Then we could query the result in NebulaGraph:

MATCH (v:louvain)
RETURN id(v), v.louvain.cluster_id LIMIT 10;

NebulaGraph Engine Examples(not yet implemented)

Basically the same as Spark Engine, but with engine="nebula".

- reader = NebulaReader(engine="spark")
+ reader = NebulaReader(engine="nebula")

Documentation

Environment Setup

API Reference

How it works

ngdi is an unified abstraction layer for different engines, the current implementation is based on Spark, NetworkX, DGL and NebulaGraph, but it's easy to extend to other engines like Flink, GraphScope, PyG etc.

          ┌───────────────────────────────────────────────────┐
          │   Spark Cluster                                   │
          │    .─────.    .─────.    .─────.    .─────.       │
          │   ;       :  ;       :  ;       :  ;       :      │
       ┌─▶│   :       ;  :       ;  :       ;  :       ;      │
       │  │    ╲     ╱    ╲     ╱    ╲     ╱    ╲     ╱       │
       │  │     `───'      `───'      `───'      `───'        │
  Algo Spark                                                  │
    Engine└───────────────────────────────────────────────────┘
       │  ┌────────────────────────────────────────────────────┬──────────┐
       └──┤                                                    │          │
          │   NebulaGraph Data Intelligence Suite(ngdi)        │ ngdi-api │◀─┐
          │                                                    │          │  │
          │                                                    └──────────┤  │
          │     ┌────────┐    ┌──────┐    ┌────────┐   ┌─────┐            │  │
          │     │ Reader │    │ Algo │    │ Writer │   │ GNN │            │  │
 ┌───────▶│     └────────┘    └──────┘    └────────┘   └─────┘            │  │
 │        │          │            │            │          │               │  │
 │        │          ├────────────┴───┬────────┴─────┐    └──────┐        │  │
 │        │          ▼                ▼              ▼           ▼        │  │
 │        │   ┌─────────────┐ ┌──────────────┐ ┌──────────┐┌──────────┐   │  │
 │     ┌──┤   │ SparkEngine │ │ NebulaEngine │ │ NetworkX ││ DGLEngine│   │  │
 │     │  │   └─────────────┘ └──────────────┘ └──────────┘└──────────┘   │  │
 │     │  └──────────┬────────────────────────────────────────────────────┘  │
 │     │             │        Spark                                          │
 │     │             └────────Reader ────────────┐                           │
 │  Spark                   Query Mode           │                           │
 │  Reader                                       │                           │
 │Scan Mode                                      ▼                      ┌─────────┐
 │     │  ┌───────────────────────────────────────────────────┬─────────┤ ngdi-udf│◀─────────────┐
 │     │  │                                                   │         └─────────┤              │
 │     │  │  NebulaGraph Graph Engine         Nebula-GraphD   │   ngdi-GraphD     │              │
 │     │  ├──────────────────────────────┬────────────────────┼───────────────────┘              │
 │     │  │                              │                    │                                  │
 │     │  │  NebulaGraph Storage Engine  │                    │                                  │
 │     │  │                              │                    │                                  │
 │     └─▶│  Nebula-StorageD             │    Nebula-Metad    │                                  │
 │        │                              │                    │                                  │
 │        └──────────────────────────────┴────────────────────┘                                  │
 │                                                                                               │
 │    ┌───────────────────────────────────────────────────────────────────────────────────────┐  │
 │    │ RETURN ngdi("pagerank", ["follow"], ["degree"], "spark", {space: "basketballplayer"}) │──┘
 │    └───────────────────────────────────────────────────────────────────────────────────────┘
 │  ┌─────────────────────────────────────────────────────────────┐
 │  │ from ngdi import NebulaReader                               │
 │  │                                                             │
 │  │ # read data with spark engine, scan mode                    │
 │  │ reader = NebulaReader(engine="spark")                       │
 │  │ reader.scan(edge="follow", props="degree")                  │
 └──│ df = reader.read()                                          │
    │                                                             │
    │ # run pagerank algorithm                                    │
    │ pr_result = df.algo.pagerank(reset_prob=0.15, max_iter=10)  │
    │                                                             │
    └─────────────────────────────────────────────────────────────┘  

Spark Engine Prerequisites

NebulaGraph Engine Prerequisites

License

This project is licensed under the terms of the Apache License 2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ngdi-0.2.5.tar.gz (18.5 kB view details)

Uploaded Source

Built Distribution

ngdi-0.2.5-py3-none-any.whl (20.2 kB view details)

Uploaded Python 3

File details

Details for the file ngdi-0.2.5.tar.gz.

File metadata

  • Download URL: ngdi-0.2.5.tar.gz
  • Upload date:
  • Size: 18.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.4.6 CPython/3.8.10

File hashes

Hashes for ngdi-0.2.5.tar.gz
Algorithm Hash digest
SHA256 0089640ecdd958323f339ff4c55094ba04b9166c8b894c11921a8484005ef795
MD5 70794e5281f810a23404b9407a6c8313
BLAKE2b-256 a1c150d69992475604cae9ef3812330536d7ffe9a3502c8f3ea4b145440eeeec

See more details on using hashes here.

File details

Details for the file ngdi-0.2.5-py3-none-any.whl.

File metadata

  • Download URL: ngdi-0.2.5-py3-none-any.whl
  • Upload date:
  • Size: 20.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.4.6 CPython/3.8.10

File hashes

Hashes for ngdi-0.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 5e31de6e34a0bea0ec475cfe5ba8137de20595c2e4e5ecc51e6e0080b688d7be
MD5 60ef557c6c144a52292de67779266ca3
BLAKE2b-256 27cc5784314c77190e296c222c57dddb77b9f0387e7823530ab0763302339641

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page