Skip to main content

Guess gender for Chinese names

Project description

# NGender

根据中文姓名猜测其性别

- 不到20行纯Python代码(核心部分)
- 无任何依赖库
- 兼容python3, python2, pypy
- 82%的准确率
- 可用于猜测性别
- 也可用于判断名字的男性化/女性化程度

## 使用

> pip install ngender

或者(OSX)

> brew install ngender

然后在命令行中

```bash
$ ng 赵本山 宋丹丹
name: 赵本山 => gender: male, probability: 0.9836229687547046
name: 宋丹丹 => gender: female, probability: 0.9759486128949907
```

当然也可以在Python程序中用

```py
>>> import ngender
>>> ngender.guess('赵本山')
('male', 0.9836229687547046)

>>> ngender.guess('宋丹丹')
('female', 0.9759486128949907)

>>> %timeit guess('宋丹丹')
100000 loops, best of 3: 4.01 µs per loop
```

## 原理

### 数学

贝叶斯公式: ```P(Y|X) = P(X|Y) * P(Y) / P(X)```

当X条件独立时, ```P(X|Y) = P(X1|Y) * P(X2|Y) * ...```

应用到猜名字上

```
P(gender=男|name=本山)
= P(name=本山|gender=男) * P(gender=男) / P(name=本山)
= P(name has 本|gender=男) * P(name has 山|gender=男) * P(gender=男) / P(name=本山)
```

### 计算

- ```charfreq.csv```是怎么来的?

曾经有个东西叫开房记录.avi(雾),里面有名字和性别, 2000w条, 统计一下得出

- 怎么算 ```P(name has 本|gender=男)```?

“本”在男性名字中出现的次数 / 男性字出现的总次数

- 怎么算 ```P(gender=男)```?

男性名出现的次数 / 总次数

- 怎么算 ```P(name=本山)```?

不用算, 在算概率的时候会互相约去



## 坑

```py
>>> ngender.guess('李胜男')
('male', 0.851334658742)
```

虽然两个字都很偏男性,但是结合起来就是女性名

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ngender-0.1.0.tar.gz (48.6 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page