Skip to main content

Graphical Tools for creating Next Gen Water model input data.

Project description

NGIAB Data Preprocess

This repository contains tools for preparing data to run a next gen simulation using NGIAB. The tools allow you to select a catchment of interest on an interactive map, choose a date range, and prepare the data with just a few clicks!

map screenshot

Table of Contents

  1. What does this tool do?
  2. Requirements
  3. Installation and Running
  4. Development Installation
  5. Usage
  6. CLI Documentation

What does this tool do?

This tool prepares data to run a next gen simulation by creating a run package that can be used with NGIAB.
It uses geometry and model attributes from the v2.2 hydrofabric more information on all data sources here.
The raw forcing data is nwm retrospective v3 forcing data.

  1. Subset (delineate) everything upstream of your point of interest (catchment, gage, flowpath etc). Outputs as a geopackage.
  2. Calculates Forcings as a weighted mean of the gridded AORC forcings. Weights are calculated using exact extract and computed with numpy.
  3. Creates configuration files needed to run nextgen.
    • realization.json - ngen model configuration
    • troute.yaml - routing configuration.
    • per catchment model configuration
  4. Optionally Runs a non-interactive Next gen in a box.

What does it not do?

Evaluation

For automatic evaluation using Teehr, please run NGIAB interactively using the guide.sh script.

Visualisation

For automatic interactive visualisation, please run NGIAB interactively using the guide.sh script

Requirements

  • This tool is officially supported on macOS or Ubuntu (tested on 22.04 & 24.04). To use it on Windows, please install WSL.

Installation and Running

# If you're installing this on jupyterhub / 2i2c you HAVE TO DEACTIVATE THE CONDA ENV
(notebook) jovyan@jupyter-user:~$ conda deactivate
jovyan@jupyter-user:~$
# The interactive map won't work on 2i2c
# This tool is likely to not work without a virtual environment
python3 -m venv .venv
source .venv/bin/activate
# installing and running the tool
pip install 'ngiab_data_preprocess'
python -m map_app
# CLI instructions at the bottom of the README

The first time you run this command, it will download the hydrofabric from Lynker Spatial. If you already have it, place conus_nextgen.gpkg into ~/.ngiab/hydrofabric/v2.2/.

Development Installation

Click to expand installation steps

To install and run the tool, follow these steps:

  1. Clone the repository:
    git clone https://github.com/CIROH-UA/NGIAB_data_preprocess
    cd NGIAB_data_preprocess
    
  2. Create a virtual environment and activate it:
    python3 -m venv env
    source env/bin/activate
    
  3. Install the tool:
    pip install -e .
    
  4. Run the map app:
    python -m map_app
    

Usage

Running the command python -m map_app will open the app in a new browser tab.

To use the tool:

  1. Select the catchment you're interested in on the map.
  2. Pick the time period you want to simulate.
  3. Click the following buttons in order:
    1. Create subset gpkg
    2. Create Forcing from Zarrs
    3. Create Realization

Once all the steps are finished, you can run NGIAB on the folder shown underneath the subset button.

Note: When using the tool, the default output will be stored in the ~/ngiab_preprocess_output/<your-input-feature>/ folder. There is no overwrite protection on the folders.

CLI Documentation

Arguments

  • -h, --help: Show the help message and exit.
  • -i INPUT_FEATURE, --input_feature INPUT_FEATURE: ID of feature to subset. Providing a prefix will automatically convert to catid, e.g., cat-5173 or gage-01646500 or wb-1234.
  • -l, --latlon: Use latitude and longitude instead of catid. Expects comma-separated values via the CLI, e.g., python -m ngiab_data_cli -i 54.33,-69.4 -l -s.
  • -g, --gage: Use gage ID instead of catid. Expects a single gage ID via the CLI, e.g., python -m ngiab_data_cli -i 01646500 -g -s.
  • -s, --subset: Subset the hydrofabric to the given feature.
  • -f, --forcings: Generate forcings for the given feature.
  • -r, --realization: Create a realization for the given feature.
  • --start_date START_DATE, --start START_DATE: Start date for forcings/realization (format YYYY-MM-DD).
  • --end_date END_DATE, --end END_DATE: End date for forcings/realization (format YYYY-MM-DD).
  • -o OUTPUT_NAME, --output_name OUTPUT_NAME: Name of the output folder.
  • -D, --debug: Enable debug logging.
  • --run: Automatically run Next Gen against the output folder.
  • --validate: Run every missing step required to run ngiab.
  • -a, --all: Run all operations: subset, forcings, realization, run Next Gen

Usage Notes

  • If your input has a prefix of gage-, you do not need to pass -g.
  • The -l, -g, -s, -f, -r flags can be combined like normal CLI flags. For example, to subset, generate forcings, and create a realization, you can use -sfr or -s -f -r.
  • When using the --all flag, it automatically sets subset, forcings, realization, and run to True.
  • Using the --run flag automatically sets the --validate flag.

Examples

  1. Prepare everything for a nextgen run at a given gage:

    python -m ngiab_data_cli -i gage-10154200 -sfr --start 2022-01-01 --end 2022-02-28 
    #         add --run or replace -sfr with --all to run nextgen in a box too
    # to name the folder, add -o folder_name
    
  2. Subset hydrofabric using catchment ID:

    python -m ngiab_data_cli -i cat-7080 -s
    
  3. Generate forcings using a single catchment ID:

    python -m ngiab_data_cli -i cat-5173 -f --start 2022-01-01 --end 2022-02-28
    
  4. Create realization using a lat/lon pair and output to a named folder:

    python -m ngiab_data_cli -i 54.33,-69.4 -l -r --start 2022-01-01 --end 2022-02-28 -o custom_output
    
  5. Perform all operations using a lat/lon pair:

    python -m ngiab_data_cli -i 54.33,-69.4 -l -s -f -r --start 2022-01-01 --end 2022-02-28
    
  6. Subset hydrofabric using gage ID:

    python -m ngiab_data_cli -i 10154200 -g -s
    # or
    python -m ngiab_data_cli -i gage-10154200 -s
    
  7. Generate forcings using a single gage ID:

    python -m ngiab_data_cli -i 01646500 -g -f --start 2022-01-01 --end 2022-02-28
    
  8. Run all operations, including Next Gen and evaluation/plotting:

    python -m ngiab_data_cli -i cat-5173 -a --start 2022-01-01 --end 2022-02-28
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ngiab_data_preprocess-3.0.3.tar.gz (1.6 MB view details)

Uploaded Source

Built Distribution

ngiab_data_preprocess-3.0.3-py3-none-any.whl (1.6 MB view details)

Uploaded Python 3

File details

Details for the file ngiab_data_preprocess-3.0.3.tar.gz.

File metadata

  • Download URL: ngiab_data_preprocess-3.0.3.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ngiab_data_preprocess-3.0.3.tar.gz
Algorithm Hash digest
SHA256 d27aef537e6dc6322bea1dc0a6ebe394ee86005d2cf24bfc905fdbcc9676dcc5
MD5 64979f968d46a768c92493775ba83d0e
BLAKE2b-256 4a9d799b3549c6e7b95d1537ff80a1ca05d2de8de7cd94600357f4ad0d5b0c03

See more details on using hashes here.

Provenance

The following attestation bundles were made for ngiab_data_preprocess-3.0.3.tar.gz:

Publisher: publish.yml on CIROH-UA/NGIAB_data_preprocess

Attestations:

File details

Details for the file ngiab_data_preprocess-3.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for ngiab_data_preprocess-3.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 f86c13c7972bb5fdad918a0b8fbf198ef0941be31acdfae81f404b3c5cc341fa
MD5 32bfeec627007d075ca3338daeb7312e
BLAKE2b-256 2e53b4c0a92354a28a41894e2f772176a981579e845c90c91efd9de1fe168965

See more details on using hashes here.

Provenance

The following attestation bundles were made for ngiab_data_preprocess-3.0.3-py3-none-any.whl:

Publisher: publish.yml on CIROH-UA/NGIAB_data_preprocess

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page