Skip to main content

Graphical Tools for creating Next Gen Water model input data.

Project description

NGIAB Data Preprocess

This repository contains tools for preparing data to run a next gen simulation using NGIAB. The tools allow you to select a catchment of interest on an interactive map, choose a date range, and prepare the data with just a few clicks!

map screenshot

Table of Contents

  1. What does this tool do?
  2. Requirements
  3. Installation and Running
  4. Development Installation
  5. Usage
  6. CLI Documentation

What does this tool do?

This tool prepares data to run a next gen simulation by creating a run package that can be used with NGIAB. It picks default data sources, the v20.1 hydrofabric and nwm retrospective v3 forcing data.

Requirements

  • This tool is officially supported on macOS or Ubuntu (tested on 22.04 & 24.04). To use it on Windows, please install WSL.

Installation and Running

# optional but highly encouraged: create a virtual environment
python3 -m venv env
source env/bin/activate
# installing and running the tool
pip install 'ngiab_data_preprocess[plot]' # [plot] needed to install the evaluation and plotting module
python -m map_app
# CLI instructions at the bottom of the README

The first time you run this command, it will download the hydrofabric and model parameter files from Lynker Spatial. If you already have them, place conus.gpkg and model_attributes.parquet into modules/data_sources/.

Development Installation

Click to expand installation steps

To install and run the tool, follow these steps:

  1. Clone the repository:
    git clone https://github.com/CIROH-UA/NGIAB_data_preprocess
    cd NGIAB_data_preprocess
    
  2. Create a virtual environment and activate it:
    python3 -m venv env
    source env/bin/activate
    
  3. Install the tool:
    pip install -e .
    
  4. Run the map app:
    python -m map_app
    

Usage

Running the command python -m map_app will open the app in a new browser tab. Alternatively, you can manually open it by going to http://localhost:5000 with the app running.

To use the tool:

  1. Select the catchment you're interested in on the map.
  2. Pick the time period you want to simulate.
  3. Click the following buttons in order:
    1. Create subset gpkg
    2. Create Forcing from Zarrs
    3. Create Realization

Once all the steps are finished, you can run NGIAB on the folder shown underneath the subset button.

Note: When using the tool, the output will be stored in the ./output/<your-input-feature>/ folder. There is no overwrite protection on the folders.

CLI Documentation

Click to expand CLI documentation

Arguments

  • -h, --help: Show the help message and exit.
  • -i INPUT_FEATURE, --input_feature INPUT_FEATURE: ID of feature to subset. Providing a prefix will automatically convert to catid, e.g., cat-5173 or gage-01646500 or wb-1234.
  • -l, --latlon: Use latitude and longitude instead of catid. Expects comma-separated values via the CLI, e.g., python -m ngiab_data_cli -i 54.33,-69.4 -l -s.
  • -g, --gage: Use gage ID instead of catid. Expects a single gage ID via the CLI, e.g., python -m ngiab_data_cli -i 01646500 -g -s.
  • -s, --subset: Subset the hydrofabric to the given feature.
  • -f, --forcings: Generate forcings for the given feature.
  • -r, --realization: Create a realization for the given feature.
  • --start_date START_DATE, --start START_DATE: Start date for forcings/realization (format YYYY-MM-DD).
  • --end_date END_DATE, --end END_DATE: End date for forcings/realization (format YYYY-MM-DD).
  • -o OUTPUT_NAME, --output_name OUTPUT_NAME: Name of the output folder.
  • -D, --debug: Enable debug logging.
  • --run: Automatically run Next Gen against the output folder.
  • --validate: Run every missing step required to run ngiab.
  • --eval: Evaluate performance of the model after running and plot streamflow at USGS gages.
  • -a, --all: Run all operations: subset, forcings, realization, run Next Gen, and evaluate.

Usage Notes

  • If your input has a prefix of gage-, you do not need to pass -g.
  • The -l, -g, -s, -f, -r flags can be combined like normal CLI flags. For example, to subset, generate forcings, and create a realization, you can use -sfr or -s -f -r.
  • When using the --all flag, it automatically sets subset, forcings, realization, run, and eval to True.
  • Using the --run flag automatically sets the --validate flag.

Examples

  1. Subset hydrofabric using catchment ID:

    python -m ngiab_data_cli -i cat-7080 -s
    
  2. Generate forcings using a single catchment ID:

    python -m ngiab_data_cli -i cat-5173 -f --start 2022-01-01 --end 2022-02-28
    
  3. Create realization using a lat/lon pair and output to a named folder:

    python -m ngiab_data_cli -i 54.33,-69.4 -l -r --start 2022-01-01 --end 2022-02-28 -o custom_output
    
  4. Perform all operations using a lat/lon pair:

    python -m ngiab_data_cli -i 54.33,-69.4 -l -s -f -r --start 2022-01-01 --end 2022-02-28
    
  5. Subset hydrofabric using gage ID:

    python -m ngiab_data_cli -i 10154200 -g -s
    # or
    python -m ngiab_data_cli -i gage-10154200 -s
    
  6. Generate forcings using a single gage ID:

    python -m ngiab_data_cli -i 01646500 -g -f --start 2022-01-01 --end 2022-02-28
    
  7. Run all operations, including Next Gen and evaluation/plotting:

    python -m ngiab_data_cli -i cat-5173 -a --start 2022-01-01 --end 2022-02-28
    

Output

The script creates an output folder named after the first catchment ID in the input file, the provided output name, or derived from the first lat/lon pair or gage ID. This folder will contain the results of the subsetting, forcings generation, realization creation, Next Gen run (if applicable), and evaluation (if applicable) operations.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ngiab_data_preprocess-2.2.1.tar.gz (1.6 MB view details)

Uploaded Source

Built Distribution

ngiab_data_preprocess-2.2.1-py3-none-any.whl (1.6 MB view details)

Uploaded Python 3

File details

Details for the file ngiab_data_preprocess-2.2.1.tar.gz.

File metadata

  • Download URL: ngiab_data_preprocess-2.2.1.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ngiab_data_preprocess-2.2.1.tar.gz
Algorithm Hash digest
SHA256 50f6c4d222bc06b0b5b73bd93405851af71d17a67a8153ad5e0f7eb7d591ac51
MD5 19a7c7940d15ba674d0dbc884f087286
BLAKE2b-256 544184f699727caa1d36a4b98da11141be54c43e0953f52a788f7e721c4fa6c5

See more details on using hashes here.

Provenance

The following attestation bundles were made for ngiab_data_preprocess-2.2.1.tar.gz:

Publisher: publish.yml on CIROH-UA/NGIAB_data_preprocess

Attestations:

File details

Details for the file ngiab_data_preprocess-2.2.1-py3-none-any.whl.

File metadata

File hashes

Hashes for ngiab_data_preprocess-2.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 243d5c888694aef42044becf9cf181645fb7a13ed681d3fae3cb38e143746518
MD5 3f506db89bb13b0c3f04316400b6c474
BLAKE2b-256 9b8d89f29af6c493814833120fee4696bc35148c7a16d7ebef17157e20f15571

See more details on using hashes here.

Provenance

The following attestation bundles were made for ngiab_data_preprocess-2.2.1-py3-none-any.whl:

Publisher: publish.yml on CIROH-UA/NGIAB_data_preprocess

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page