Skip to main content

Graphical Tools for creating Next Gen Water model input data.

Project description

NGIAB Data Preprocess

This repository contains tools for preparing data to run a next gen simulation using NGIAB. The tools allow you to select a catchment of interest on an interactive map, choose a date range, and prepare the data with just a few clicks!

map screenshot

Table of Contents

  1. What does this tool do?
  2. Requirements
  3. Installation and Running
  4. Development Installation
  5. Usage
  6. CLI Documentation

What does this tool do?

This tool prepares data to run a next gen simulation by creating a run package that can be used with NGIAB.
It uses geometry and model attributes from the v2.2 hydrofabric more information on all data sources here.
The raw forcing data is nwm retrospective v3 forcing data.

  1. Subset (delineate) everything upstream of your point of interest (catchment, gage, flowpath etc). Outputs as a geopackage.
  2. Calculates Forcings as a weighted mean of the gridded AORC forcings. Weights are calculated using exact extract and computed with numpy.
  3. Creates configuration files needed to run nextgen.
    • realization.json - ngen model configuration
    • troute.yaml - routing configuration.
    • per catchment model configuration
  4. Optionally Runs a non-interactive Next gen in a box.

What does it not do?

Evaluation

For automatic evaluation using Teehr, please run NGIAB interactively using the guide.sh script.

Visualisation

For automatic interactive visualisation, please run NGIAB interactively using the guide.sh script

Requirements

  • This tool is officially supported on macOS or Ubuntu (tested on 22.04 & 24.04). To use it on Windows, please install WSL.

Installation and Running

# This tool is likely to not work without a virtual environment
python3 -m venv .venv
source .venv/bin/activate
# installing and running the tool
pip install 'ngiab_data_preprocess'
python -m map_app
# CLI instructions at the bottom of the README

The first time you run this command, it will download the hydrofabric from Lynker Spatial. If you already have it, place conus_nextgen.gpkg into ~/.ngiab/hydrofabric/v2.2/.

Development Installation

Click to expand installation steps

To install and run the tool, follow these steps:

  1. Clone the repository:
    git clone https://github.com/CIROH-UA/NGIAB_data_preprocess
    cd NGIAB_data_preprocess
    
  2. Create a virtual environment and activate it:
    python3 -m venv env
    source env/bin/activate
    
  3. Install the tool:
    pip install -e .
    
  4. Run the map app:
    python -m map_app
    

Usage

Running the command python -m map_app will open the app in a new browser tab.

To use the tool:

  1. Select the catchment you're interested in on the map.
  2. Pick the time period you want to simulate.
  3. Click the following buttons in order:
    1. Create subset gpkg
    2. Create Forcing from Zarrs
    3. Create Realization

Once all the steps are finished, you can run NGIAB on the folder shown underneath the subset button.

Note: When using the tool, the default output will be stored in the ~/ngiab_preprocess_output/<your-input-feature>/ folder. There is no overwrite protection on the folders.

CLI Documentation

Arguments

  • -h, --help: Show the help message and exit.
  • -i INPUT_FEATURE, --input_feature INPUT_FEATURE: ID of feature to subset. Providing a prefix will automatically convert to catid, e.g., cat-5173 or gage-01646500 or wb-1234.
  • -l, --latlon: Use latitude and longitude instead of catid. Expects comma-separated values via the CLI, e.g., python -m ngiab_data_cli -i 54.33,-69.4 -l -s.
  • -g, --gage: Use gage ID instead of catid. Expects a single gage ID via the CLI, e.g., python -m ngiab_data_cli -i 01646500 -g -s.
  • -s, --subset: Subset the hydrofabric to the given feature.
  • -f, --forcings: Generate forcings for the given feature.
  • -r, --realization: Create a realization for the given feature.
  • --start_date START_DATE, --start START_DATE: Start date for forcings/realization (format YYYY-MM-DD).
  • --end_date END_DATE, --end END_DATE: End date for forcings/realization (format YYYY-MM-DD).
  • -o OUTPUT_NAME, --output_name OUTPUT_NAME: Name of the output folder.
  • -D, --debug: Enable debug logging.
  • --run: Automatically run Next Gen against the output folder.
  • --validate: Run every missing step required to run ngiab.
  • -a, --all: Run all operations: subset, forcings, realization, run Next Gen

Usage Notes

  • If your input has a prefix of gage-, you do not need to pass -g.
  • The -l, -g, -s, -f, -r flags can be combined like normal CLI flags. For example, to subset, generate forcings, and create a realization, you can use -sfr or -s -f -r.
  • When using the --all flag, it automatically sets subset, forcings, realization, and run to True.
  • Using the --run flag automatically sets the --validate flag.

Examples

  1. Prepare everything for a nextgen run at a given gage:

    python -m ngiab_data_cli -i gage-10154200 -sfr --start 2022-01-01 --end 2022-02-28 
    #         add --run or replace -sfr with --all to run nextgen in a box too
    # to name the folder, add -o folder_name
    
  2. Subset hydrofabric using catchment ID:

    python -m ngiab_data_cli -i cat-7080 -s
    
  3. Generate forcings using a single catchment ID:

    python -m ngiab_data_cli -i cat-5173 -f --start 2022-01-01 --end 2022-02-28
    
  4. Create realization using a lat/lon pair and output to a named folder:

    python -m ngiab_data_cli -i 54.33,-69.4 -l -r --start 2022-01-01 --end 2022-02-28 -o custom_output
    
  5. Perform all operations using a lat/lon pair:

    python -m ngiab_data_cli -i 54.33,-69.4 -l -s -f -r --start 2022-01-01 --end 2022-02-28
    
  6. Subset hydrofabric using gage ID:

    python -m ngiab_data_cli -i 10154200 -g -s
    # or
    python -m ngiab_data_cli -i gage-10154200 -s
    
  7. Generate forcings using a single gage ID:

    python -m ngiab_data_cli -i 01646500 -g -f --start 2022-01-01 --end 2022-02-28
    
  8. Run all operations, including Next Gen and evaluation/plotting:

    python -m ngiab_data_cli -i cat-5173 -a --start 2022-01-01 --end 2022-02-28
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ngiab_data_preprocess-3.0.1.tar.gz (1.5 MB view details)

Uploaded Source

Built Distribution

ngiab_data_preprocess-3.0.1-py3-none-any.whl (1.5 MB view details)

Uploaded Python 3

File details

Details for the file ngiab_data_preprocess-3.0.1.tar.gz.

File metadata

  • Download URL: ngiab_data_preprocess-3.0.1.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ngiab_data_preprocess-3.0.1.tar.gz
Algorithm Hash digest
SHA256 2c7cc986bfc0d0ba65f9bc56b768a1a909d1ba2f59d10ac4b827026a9c3e7730
MD5 474bddfe1f694fb5a82170c79fd1332b
BLAKE2b-256 0be6c5ba49701448826e0df0688b051140be67ecc55b35b2b7bba0a5412aa5ea

See more details on using hashes here.

Provenance

The following attestation bundles were made for ngiab_data_preprocess-3.0.1.tar.gz:

Publisher: publish.yml on CIROH-UA/NGIAB_data_preprocess

Attestations:

File details

Details for the file ngiab_data_preprocess-3.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for ngiab_data_preprocess-3.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ae5187f37eb03213d7375694cc3bb8ffc02440ebb16ab5061ed3e7e68210f785
MD5 517de7451efcc08a2742cce28c409da7
BLAKE2b-256 990d2accd71e36f3dbd43db2742b2a60d651e9e2beb784daec1cc156fee68694

See more details on using hashes here.

Provenance

The following attestation bundles were made for ngiab_data_preprocess-3.0.1-py3-none-any.whl:

Publisher: publish.yml on CIROH-UA/NGIAB_data_preprocess

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page