Skip to main content

A wrapper library for exposing the C++ neighborhood graph library (NGL) for computing empty region graphs to python

Project description

PyPi Travis-CI Coveralls ReadTheDocs Pyup nglpy

A Python wrapped version of the [Neighborhood Graph Library (NGL) developed by Carlos Correa and Peter Lindstrom.

Given a set of arbitrarily arranged points in any dimension, this library is able to construct several different types of neighborhood graphs mainly focusing on empty region graph algorithms such as the beta skeleton family of graphs.

Installation

pip install nglpy

Usage

Then you can use the library from python such as the example below:

import nglpy
import numpy as np

point_set = np.random.rand(100,2)
max_neighbors = 9
beta = 1

aGraph = nglpy.EmptyRegionGraph(max_neighbors=max_neighbors, relaxed=False, beta=beta)
aGraph.build(point_set)

aGraph.neighbors()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nglpy-1.1.4-pp39-pypy39_pp73-win_amd64.whl (119.3 kB view details)

Uploaded PyPy Windows x86-64

nglpy-1.1.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (199.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nglpy-1.1.4-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (212.7 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (146.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nglpy-1.1.4-pp38-pypy38_pp73-win_amd64.whl (119.7 kB view details)

Uploaded PyPy Windows x86-64

nglpy-1.1.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (199.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nglpy-1.1.4-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (212.8 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (147.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nglpy-1.1.4-pp37-pypy37_pp73-win_amd64.whl (119.3 kB view details)

Uploaded PyPy Windows x86-64

nglpy-1.1.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (200.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nglpy-1.1.4-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (214.0 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (146.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nglpy-1.1.4-cp311-cp311-win_amd64.whl (119.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

nglpy-1.1.4-cp311-cp311-win32.whl (95.4 kB view details)

Uploaded CPython 3.11 Windows x86

nglpy-1.1.4-cp311-cp311-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

nglpy-1.1.4-cp311-cp311-musllinux_1_1_i686.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

nglpy-1.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nglpy-1.1.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.4-cp311-cp311-macosx_10_9_x86_64.whl (162.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

nglpy-1.1.4-cp310-cp310-win_amd64.whl (119.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

nglpy-1.1.4-cp310-cp310-win32.whl (95.4 kB view details)

Uploaded CPython 3.10 Windows x86

nglpy-1.1.4-cp310-cp310-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

nglpy-1.1.4-cp310-cp310-musllinux_1_1_i686.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

nglpy-1.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nglpy-1.1.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.4-cp310-cp310-macosx_10_9_x86_64.whl (162.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

nglpy-1.1.4-cp39-cp39-win_amd64.whl (119.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

nglpy-1.1.4-cp39-cp39-win32.whl (95.4 kB view details)

Uploaded CPython 3.9 Windows x86

nglpy-1.1.4-cp39-cp39-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

nglpy-1.1.4-cp39-cp39-musllinux_1_1_i686.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

nglpy-1.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nglpy-1.1.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.4-cp39-cp39-macosx_10_9_x86_64.whl (162.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nglpy-1.1.4-cp38-cp38-win_amd64.whl (119.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

nglpy-1.1.4-cp38-cp38-win32.whl (95.5 kB view details)

Uploaded CPython 3.8 Windows x86

nglpy-1.1.4-cp38-cp38-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

nglpy-1.1.4-cp38-cp38-musllinux_1_1_i686.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

nglpy-1.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nglpy-1.1.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.4-cp38-cp38-macosx_10_9_x86_64.whl (163.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

nglpy-1.1.4-cp37-cp37m-win_amd64.whl (119.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

nglpy-1.1.4-cp37-cp37m-win32.whl (95.7 kB view details)

Uploaded CPython 3.7m Windows x86

nglpy-1.1.4-cp37-cp37m-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

nglpy-1.1.4-cp37-cp37m-musllinux_1_1_i686.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

nglpy-1.1.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nglpy-1.1.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.4-cp37-cp37m-macosx_10_9_x86_64.whl (162.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file nglpy-1.1.4-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1ba3da60517f678b3af7a473b04baed3de44aebe731920969db2f801f3b496aa
MD5 261f91b6088b39a31be35d049f017b59
BLAKE2b-256 5deb8395d9e5e4ecee39d302c62019dbac4c0a63cb2651ff23f3868df98335ff

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a7096265620dd415125b030d8263a6f9c45d67f61a510fcd18fe959023fc43a
MD5 dae7f128949c399bfa5b90cc35a7ebbc
BLAKE2b-256 daf8676c7a8d14c2609ffbd5a7c88a83b0037e1fce8db0a7611c4a098f9f3699

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a687470f8f1aefe91d9c87f8ba0d8374b6db2290a69984121872ff962c811729
MD5 9bd5a204aced139534747a0451911aba
BLAKE2b-256 349e4e65cfb1db98d42b0604cbaf0fcfb2052ec908ec7006751794c0077b0da7

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1fec83cada05becc932e7740daf7641e9c423758c7e417e7387ff3cf9906428a
MD5 cb327124a54764504a68c13b71671755
BLAKE2b-256 c4b663efa812352e9f32c19f7a1d78251ed48a0a962b93efc0ec37a53202c562

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c2598eea097fb361704ac1e348c077b8c465e60ccc73493d46a415a7bf662eb1
MD5 58b2862f95399d5b406cc9dcaba65d82
BLAKE2b-256 a708daad13c97afadfab222640c1670ec9420270c732a99d21c1f0074496f9b3

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 24e719f636f2cba93567a76241f6dc32b6c181cb995bedaad0c9b87bc9ff6fc3
MD5 aee9a76dd60e8d06cc6b886addfd6ce6
BLAKE2b-256 814ee732b51454a0e2f7bc148fb18b58814961d0c0438e08a8b93885a038a10f

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e4c1587661b8bc903c4ca4a94c8fc222633788074abc0bc0136e42da7bf45908
MD5 c71f5abb36a0b3f052277e2f60d61a6d
BLAKE2b-256 030f3122c094b67a971cb6dfdc7e0c563956b9fd02397cc5aa25679fcf65b66f

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c5e4db1a7b7853ca0592502b3d6f3c5e07f138e8ec25a782fcde673a3e646df2
MD5 59639e534fa2b5bc1d9dbab4a6998bdc
BLAKE2b-256 3026ce34936033b83a650a197512802fd8761473f8165580f4222edbb7235a39

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 b534fc045c9e5ea43b53cb6cdaa1d1054f2b038048164b84bddefa2583d4c315
MD5 543b1cf01b21c6bd933a749527e5f88b
BLAKE2b-256 9a80c53b1ee3c9de88fb9bff40077d67e87f95577de5cecbf7a8a4294a5d08e5

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69b52b8a47afbb19275d5f86215e146dae572b7667174f0199691078a0c96c28
MD5 a3f100d4b8eaf7f05df025f009467adc
BLAKE2b-256 6805d0ca1f651c44329301a727984c17a7a74805a6346db08cf6405328343bfc

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5807dfb43e294f1b0747df2931b7ea75a135a90d3a96ed12bfd10608d98be5e3
MD5 723d9f0407bd7718bce5ebf47a893bd5
BLAKE2b-256 ccf1328253b7cc21f3e69b528d686096eb4554cb192dc035ce7a672ffad5cce8

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c3a8993598b90deab62d75a0e6c4dcec21ac7647279dfecab2264babf55b2450
MD5 fc784c85959b4e2306f2a08b20e0773a
BLAKE2b-256 4f78b27a85735e952dd14dd5bedf32f1aa7041083a0f4b98afa19f81116fb577

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: nglpy-1.1.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 119.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3a6aff9b004a43f7f92313b644558b6088b67ad6585b87c51c80e8d7aef3da23
MD5 69284237f29fcba19f23a1acf6cfd257
BLAKE2b-256 bf8783f8e010ea2faa5a4a635019621af7b296dd89184523b10ff9f0c3be1ecd

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: nglpy-1.1.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 95.4 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 63fbee438d56d97f00d445c4ab0d89962173b4490455058878d9c4550ae8beab
MD5 3ca6256b735490578bede35385609db1
BLAKE2b-256 03a4d8aab36ee6bf5f50a0e263ab6a258a2f971f450c22c7b35f4554ff80626c

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a658acba999e272f1bc5596e49933640fdb85dd95794ebb363ef8a1d29115e25
MD5 97f0b5a889897eb2b94b990961dea0c3
BLAKE2b-256 509c3b3095e29cde4c0513c2c5cdad6956a368743ccf3125044c2e28ce2cc915

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 00918a1ba682b628a7750e3238cf636a9dbeba66a473f0ab3358f6de4157f908
MD5 9ce19efd61bf56d4d8d9a0a51f7f1daf
BLAKE2b-256 6f54804fb21e47e7cf4b272e2b61cee0e64c6961688aeb68a5ccf5aeba7f1592

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c100f85c1ec5a8c482ddb86855021f585c64fdad611035a2ed4025ab1c8b35e8
MD5 de8dc8e30210f6e6209b31fa5fa46029
BLAKE2b-256 d08523e887330d56deb56b58e297ce7cdd4a9260d6cbc3450b218186302a4616

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 da17bc2236fb6515e39e209cb96b2eeddcb2851d565f439224724dbb86f956f9
MD5 fa511f76bb34ff2a080147ef0550577b
BLAKE2b-256 b63a0ef391fff9e7ab4440303254dd6fb13146d9210e2127fadd3a0beb8d5200

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 42c638cd6d66db48044ecb733021589f56abe353cc0327a6ef9168dc37df4315
MD5 4c126bfa858c859f7f5ae8e06d652f76
BLAKE2b-256 219c8d8f3c557f758e71fdeb74400e712be6abc09b594b0b904448f57e1d4ef6

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nglpy-1.1.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 119.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6a1ba632e80f5b355ddab8758e3e9c2086ad787b0a615aef7c52e8a71d36c7a3
MD5 cb005c8d99cc8e184eec501bf1889fc2
BLAKE2b-256 d056ff35ec00c909b58bf04ab624435d2387332101cfeff99a9b3d6869e122a8

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: nglpy-1.1.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 95.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 7367ec929ff65fcf4488150a131a78c0e01b54d78aa87f5b363d82efcfbabacb
MD5 69ae37527867d147e6186f50f28b0033
BLAKE2b-256 16f832f93acea1ad2156f4a6ed66390cc3498f7ca85d5463035daa311b84b9f9

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5d3928d942c802e532ff1afe9ef7de9f406dcc29ef06b0b48c7f4c74165b7152
MD5 43ac4c9518d7710832250d5959231a38
BLAKE2b-256 d84c9c4c05fe3cf71f7b61a69457cf9e313288b5b315df51a72671897f3166f6

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4ac69eea1ceb1026f31b7c75976fb520c2d9a778b0d4060cdbdba60b2b06c360
MD5 d059dede1653ee5bf732f1858c7ea510
BLAKE2b-256 2a1d6e0288b7f60ff57cd203de3e3135b1d5037f3c5e2a08eeb4394c3c6c2d33

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e4f08158175320a0a5b380f7823fa21f3fab32f7551aff01156ee10053e17e7e
MD5 678699ade8d21a313b6d0d017fab0384
BLAKE2b-256 ac3705f5be8159066e365de6bc5435409214108e6f2f28ece1bdbb8b0b05079b

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 72132e418b1cc899c7118e46b612e4083de7f987c833cd76f6df6d8385ef6edd
MD5 c0cd473ddc8273a34846b8bc23edb38c
BLAKE2b-256 61e3514e557a69654cf154f1f71bbd0a3c46a4948afc91618f55bc0fed7a3405

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c66f8efde53334a81508c5dd23f1907bb62c63a3d8b9e6c396dc381c6ea3adb2
MD5 9c9c0e8bc4419715746a8f29b8d9d165
BLAKE2b-256 89be7b9d21e364f2fbcbb2bda3ecd0bd92d9224f62daeaf099a89ae01fec0415

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nglpy-1.1.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 119.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 21ed0706db44e60e33f33db92e6cedca4ea0780472bd7298fe21b86d97c00b3f
MD5 60c36da3b75e8465f72a9c323a2c33f5
BLAKE2b-256 5c1f3b6f70d1fae92be01fab6df4b6432baa5bca2e920e1941e88f267160bb24

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: nglpy-1.1.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 95.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e0a51994dd9e1c9e57cb09d50e34e174f81f271e6cb9ecc0ff82047231cc0964
MD5 c14413074fd8fe83517e76700393813f
BLAKE2b-256 9c0a6d6132b30b83f4fdf3a88a92dc7e96e1866e5a6da627d92587e95162e24a

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dc48d9a036925cf9388a32d5233af37a53b2274a72bfc8c50a97be33406df0ce
MD5 5ea55f3c46aa001d7933c989604aced8
BLAKE2b-256 2d47f71af5f350c12cba41e55444c795e7470417792429725406cb2fecbe6273

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f219635116c90d07d1e0ea4c89e3a2931266fa374a1a262fb93fb8cb41db1669
MD5 9b934ed3c4c3388fb27354a6a3bf4c49
BLAKE2b-256 bb2f5f2fa7c4659197a1281ac8450d40ae083bbbd31fa848674918292c6ce7a6

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 800a9b0c5eb925b4b6843ab6ddd0b512008e258c9c96e2f31f3f1f97cfaeaac6
MD5 f04dfe021c2938a066042b07f54004da
BLAKE2b-256 f9884aa08a42ec98ac9a4bdd09db1c82eca798d93524f12fb9143d8ae5d5a60b

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1f84e4eab6b101f351094c72751ffdd98ecb14db1c4bb2434b283e0b5db09aee
MD5 67ee24de02afd3b78a0bed81810bf2a3
BLAKE2b-256 05533e9483160912fed488ad1c9cb469a4f3fa78056bdb8e1b799768af489c92

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f8d0082c585455dfe61ef412ed7c47dc8289eda816f1a32e07d68d6abdd82135
MD5 2ec72adde1f29d24c77d601e23184ad6
BLAKE2b-256 7a83d9e1b2282617f865003da06e1f546cf39b8933660f898bc3e2a0c7149015

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nglpy-1.1.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 119.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a0697c42345f205c366e97ad153fee736e12cdbac2ebb431f13640dba246f851
MD5 5ce64b2c2ebf75813f777a115b50808a
BLAKE2b-256 4d6566e1ba54eaffa40a82902bb4139d9097e61f3ba144c38d95dd8fb826718d

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: nglpy-1.1.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 95.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d35bcd9bb7265bccf6403801bd8af1906cc143918926db95039b567856920bcc
MD5 0a95d5ec041398034a89615f06cefb92
BLAKE2b-256 a1ab3f26a011471acb7a065117c8f99fc747836f1364addda073e3020759aac0

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1009b48dfc4b227d70387966a25166a03462037731b48989df34f607d0805b78
MD5 fcf2feab45db94902903b23b90a2c56c
BLAKE2b-256 4713738b1274666192b429cd73844229eda5533f824a66d8d3592f25c89ec98e

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ed84ad3590a12ce809159d02f91da451d7d527632cc454d7a9cb50e32c38dd10
MD5 6c6abc8d315b0a27ec8b3fd3469d6eab
BLAKE2b-256 11847bb13aa591e80379d219480f99165e40aaa921591f160988dc15d36f73e0

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6561732102fa507514b18077311891ead0fd9fa63d0af42a993d69271b6fe743
MD5 dff46e734add2263c0670459892e2fbd
BLAKE2b-256 4a33f5b7fe926289b657e1e6a7ff323b7cd37f60b523563764e02b02248bfc43

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c1e3afaaaa54e9c8adcb8512e49353040d8d6007788963097dc67641823c559d
MD5 64282471a30b8564e2a0b80f50eda5aa
BLAKE2b-256 84926ad2cf0ba6b5e693e74b7d3062402f865d208d3180d703b7135f9330c282

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 de2a81472374014e9547bf6f69c264adfdb8103855769a86c3c23e86eedb16b6
MD5 7268039d51e3c883d9acf5d5b0aa234f
BLAKE2b-256 2e47ccc8239fbcf14e7385e05a70492b9cf4d4f56cf69680c76393b6e8679bd3

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nglpy-1.1.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 119.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 44a391858bef13a3013893be67b7e5cce43dff77d62a43a80d5a298f5642d09f
MD5 6a25eb3d3e0bfb1196b6e2b441432720
BLAKE2b-256 b9a38d8cbde0ea9db06afd2f1a8f1e7126f9b476a06c5cfcb2556f7ec5fbe67a

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: nglpy-1.1.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 95.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 d0012c9deb73c6201baf04f5a8f326a4c7f7647b1bdc0054debd3cb54ad089d5
MD5 9264d1b96023da096c5465b60236fe34
BLAKE2b-256 6a846af1e600eac131ab06cff3dea8e06dcc0fb12b711094e9f6e45570e744b1

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 299e66bb2df16a6c37d38c6429940f476612804bd4fa9977a2667d9c3a1e58f8
MD5 bb6b730d41f3f7f1d6108bfed18a3bb5
BLAKE2b-256 0a4999b6028e10c96dd54ad036ec8adbbe539c6a3ad14af4245be5ae9fedacf3

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bb4bb44084497d068914ed6d6d962fa76bda43f29793effdc400d8ec45ceedc2
MD5 a9971393ac90483409e24667e13cebb2
BLAKE2b-256 d9ecdef086680fdf62fd1cea04bd5f0c0d8500e6d0f41ac87020435ffca678d9

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ba902e3194283e264a3cdcbd7439b7afdd1ad686a788fd2201ba186ad3c36ac
MD5 f8005e929dd94fa5ece900d7e13c5257
BLAKE2b-256 21dcde6f1bd295759649b23da074d583fca79a91433dfdc636825fdbd2421997

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dcef9ed9d308efea3a09e3dfa06ae56fdbd54998667948a0803709fcb312c4d9
MD5 24934046cc53a1a6a8a2a065f306cb29
BLAKE2b-256 2351a8f7d79e65c140e065adf2601ab3c5e556b3c3346d5a7625267027e8b093

See more details on using hashes here.

File details

Details for the file nglpy-1.1.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d3f076389ac68e5a65fa2d7796fad76c93c6a6e5cc7700aa87d07b16baf5f7e
MD5 22a9756d24aa94e21354305625f75297
BLAKE2b-256 35d08447573980075735547c15cc1c7829d6af38055456ccf3a9335a369190ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page