Skip to main content

A wrapper library for exposing the C++ neighborhood graph library (NGL) for computing empty region graphs to python

Project description

Latest Version on PyPI PyPI downloads Code Quality Test Results Test Suite Results CodeFactor Coveralls ReadTheDocs Pyup This code is formatted in black BSD 3-Clause License nglpy

A Python wrapped version of the [Neighborhood Graph Library (NGL) developed by Carlos Correa and Peter Lindstrom.

Given a set of arbitrarily arranged points in any dimension, this library is able to construct several different types of neighborhood graphs mainly focusing on empty region graph algorithms such as the beta skeleton family of graphs.

Installation

pip install nglpy

Usage

Then you can use the library from python such as the example below:

import nglpy
import numpy as np

point_set = np.random.rand(100,2)
max_neighbors = 9
beta = 1

aGraph = nglpy.EmptyRegionGraph(max_neighbors=max_neighbors, relaxed=False, beta=beta)
aGraph.build(point_set)

aGraph.neighbors()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nglpy-1.1.6.tar.gz (131.6 kB view details)

Uploaded Source

Built Distributions

nglpy-1.1.6-pp39-pypy39_pp73-win_amd64.whl (119.5 kB view details)

Uploaded PyPy Windows x86-64

nglpy-1.1.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (199.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nglpy-1.1.6-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (212.9 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.6-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (146.8 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nglpy-1.1.6-pp38-pypy38_pp73-win_amd64.whl (119.9 kB view details)

Uploaded PyPy Windows x86-64

nglpy-1.1.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (199.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nglpy-1.1.6-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (213.0 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.6-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (147.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nglpy-1.1.6-pp37-pypy37_pp73-win_amd64.whl (119.5 kB view details)

Uploaded PyPy Windows x86-64

nglpy-1.1.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (200.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nglpy-1.1.6-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (214.3 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.6-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (146.8 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nglpy-1.1.6-cp311-cp311-win_amd64.whl (119.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

nglpy-1.1.6-cp311-cp311-win32.whl (95.7 kB view details)

Uploaded CPython 3.11 Windows x86

nglpy-1.1.6-cp311-cp311-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

nglpy-1.1.6-cp311-cp311-musllinux_1_1_i686.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

nglpy-1.1.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nglpy-1.1.6-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.6-cp311-cp311-macosx_10_9_x86_64.whl (162.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

nglpy-1.1.6-cp310-cp310-win_amd64.whl (119.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

nglpy-1.1.6-cp310-cp310-win32.whl (95.7 kB view details)

Uploaded CPython 3.10 Windows x86

nglpy-1.1.6-cp310-cp310-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

nglpy-1.1.6-cp310-cp310-musllinux_1_1_i686.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

nglpy-1.1.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nglpy-1.1.6-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.6-cp310-cp310-macosx_10_9_x86_64.whl (162.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

nglpy-1.1.6-cp39-cp39-win_amd64.whl (119.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

nglpy-1.1.6-cp39-cp39-win32.whl (95.6 kB view details)

Uploaded CPython 3.9 Windows x86

nglpy-1.1.6-cp39-cp39-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

nglpy-1.1.6-cp39-cp39-musllinux_1_1_i686.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

nglpy-1.1.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nglpy-1.1.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.6-cp39-cp39-macosx_10_9_x86_64.whl (162.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nglpy-1.1.6-cp38-cp38-win_amd64.whl (120.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

nglpy-1.1.6-cp38-cp38-win32.whl (95.8 kB view details)

Uploaded CPython 3.8 Windows x86

nglpy-1.1.6-cp38-cp38-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

nglpy-1.1.6-cp38-cp38-musllinux_1_1_i686.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

nglpy-1.1.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nglpy-1.1.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.6-cp38-cp38-macosx_10_9_x86_64.whl (163.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

nglpy-1.1.6-cp37-cp37m-win_amd64.whl (119.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

nglpy-1.1.6-cp37-cp37m-win32.whl (96.0 kB view details)

Uploaded CPython 3.7m Windows x86

nglpy-1.1.6-cp37-cp37m-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

nglpy-1.1.6-cp37-cp37m-musllinux_1_1_i686.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

nglpy-1.1.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nglpy-1.1.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

nglpy-1.1.6-cp37-cp37m-macosx_10_9_x86_64.whl (162.9 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file nglpy-1.1.6.tar.gz.

File metadata

  • Download URL: nglpy-1.1.6.tar.gz
  • Upload date:
  • Size: 131.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.6.tar.gz
Algorithm Hash digest
SHA256 4e80c97277c1a8788b6881452d7e906dce9d2556246ecf1d0a2b46bf1a4269f9
MD5 bd38e3208188974157a32840e101d170
BLAKE2b-256 2c75068d708100b808a53be5b47d0a494f9798c89e584deee8a94a9be9274748

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d0b492fc1410641be20917e64f1e1d4045676a488b90a68702951bf84201c192
MD5 a12ba3a3b070748a1f70e8725cba8e75
BLAKE2b-256 0fe06dc14b9baf59d6ba719e2e2f78b6eb1c2fff33ddfcc15d167615c90fdf96

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 064278e33108d9e0a84f76667ec4d37a04567bf97b362d0dfee30919eba44a0c
MD5 9ca9327946f2f2807379823b50ef8121
BLAKE2b-256 393c2a16f9f9dc9594b20d606771737e0181183681f20015c261db4470347994

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a5bc222633e591fb37c1b574ceff393424ab15b2c8b8c27e757a160d2d1ecb6d
MD5 c7060608e2169a96ccc55d29586ead97
BLAKE2b-256 8c4db72cf8790117739cfedfa3448c28ad585c33beee1930b225cc437b828773

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 397707a80c4f054123df341ceb7d6451010f5cbf274167bf4d46cbe6d5cffbd0
MD5 ae82ee8e86e0e6b3e49d384582e75be1
BLAKE2b-256 67b2deb6df70790272666e9fab287c77f26bfcc9246ea0edf2fb68147c7e13b2

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 10e3a6659349421460dc6b88362cf9ac603d1283015f7943bcf4ba129c8f38e2
MD5 2c7f78b1d44e90c11c25614bf762e16a
BLAKE2b-256 08dea9e1b362f6967085797719ca6dc617ab61a43103d680d0169e798b849ef4

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1a1de8a30619227129a526d31adacb47f547f0bc22692171786ff9c367fd41e5
MD5 f4f21b44b46344b374049ba3d32f5491
BLAKE2b-256 3ad55e2aacf94938522914d973fef2b0f8a4b62ddfd771b22633c8ba8d42c22b

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3ece6ad9a5ab4fff2e9543af0402cf1ff432d2fb1db584cd25d4686d36fc8dc0
MD5 4247997e4a46fc58cd20c90e880250a8
BLAKE2b-256 d6f935e0d102944284d466bdd94ed9d45b002fbde94757395b2a94f2aa7c79fc

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fe60968775804348effd8e866a6f692a7173559ece9d54bf8e225e721c9a12a9
MD5 765f9b688f0a9892c090e4dc0d8fc927
BLAKE2b-256 7789448ff0d80d577e0d60845425f1222819c5829e5ff7145d81e3a0ef24c249

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7af034cfb4ec3ad95e9f2af209692f025d9f1757b3fcedd58d86f68168005f84
MD5 612f60c0cb3f88f18f9f7cba04612d8b
BLAKE2b-256 2ef9ad43835c005aad9c977028aed74cedaa24b26d86ccc96facfecd8f0b557e

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dfb4a537a0e8b81f2ccb711c0e8afe2bfed00d7dbb504f9bfff8ec1c8975d565
MD5 048c7a091cd091fb8126b39e0010f4eb
BLAKE2b-256 a694d2093e5acd2f74c3f5092a033e1f3bb242e4ab74b5a1bf9b017a2557fe1d

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 92356ba9d1146a6ac3deb655ce378ce44b4f0e5890356ba5eae4aeafa429fe29
MD5 3a95a6f03a65e0e73f3ee315e217978c
BLAKE2b-256 5dcf7f4e17690a23da2e4e276986df1e40838a0a00adf4c5c05595e3614ea414

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0e14a2952211def41ed6d2b098d317a17047e7b4a09067632b70ba31dec368ac
MD5 e0a26e9807c19053e8538d3b3000cdc8
BLAKE2b-256 08a5f735228356ea9f7c4c63d25449cc5f8a2e2d42ff0637c28c5472ccc2496c

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: nglpy-1.1.6-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 119.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2e3878a2c15194c7d06129a0636a7a611d68749bb4144e4c8dd387b164326df1
MD5 246d37c7671ef67bb56d69915e47d25f
BLAKE2b-256 56b9793de8dc2fee39c913ca691670770a029395d66a978a8960f2ac50d3b3bd

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp311-cp311-win32.whl.

File metadata

  • Download URL: nglpy-1.1.6-cp311-cp311-win32.whl
  • Upload date:
  • Size: 95.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.6-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 0659c3cee74ce7b31db41a27ea5ecdbc6f735947f318a08f4760e3ba718fc14c
MD5 c8625a1cd5190458ad22f4452bb1a8cd
BLAKE2b-256 aaded371970733c2bbe3b925cb241dce7ce8db08bba4c117f493ac7f0d6ec9e1

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b7f6026183e3d16c4e49380cdebbcf188b2e54651781beb44f01d1de5dce8a10
MD5 39eca6700a2d691ea9034262d8141924
BLAKE2b-256 32d516a82d2ac34cbf11f586868a96017f233c588777269da3d95bea22415799

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 28920331dca59cc77d4add0aa84d1662147c410165fe40c29f561dbf9180d4c5
MD5 7c316637afee4e563aa368275fb992db
BLAKE2b-256 d4ddb9d940e584eeb57cc13765b811e88f05cf1154a0646b259ea189936a80be

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f5cf1ecd45f59625f4f15817d3c4b831fe9bd4cc7c4e50b5b47c9b0392bafa84
MD5 8bd3c204f6fb46b74187367e1a48eab1
BLAKE2b-256 1d2bad376f25ae9dabd028244381b9786517107a244e034b5c1e06c9a56d9525

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b93bc8b83682387c3a211134a18ca527b1f9747188b328a5ba61036621dbb019
MD5 2b212a8154b5f2f89697f38369d1089b
BLAKE2b-256 2bf7b8750d844e3b528e29acb51cccdc3910e81610da3228ab0465c7d717ca56

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 42c90213b6276a2ca9ffd287c6b078bc0ed0c440d4bbc2596bd816e00941e31c
MD5 0769d8d4e24df4e08eca37a7de9cf925
BLAKE2b-256 4c469f6e5b404673287ae0520a4cb5da17809a724e103d17ab314c1aa88c79bd

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nglpy-1.1.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 119.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 493dd9763a0b4d1b360ae24dbd4234f44760da095fdd36a3674c46fe090631ba
MD5 ad9c579b752511a64db7c2acf64d72b1
BLAKE2b-256 bab819af7b840862d276485f7bbc819c2093721899b81038544aa2eaa3949956

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp310-cp310-win32.whl.

File metadata

  • Download URL: nglpy-1.1.6-cp310-cp310-win32.whl
  • Upload date:
  • Size: 95.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.6-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 6328d931b823f6617b26d3c18767d97fb7b21aceffbe47bd1d0003e36f687b80
MD5 c36b45cf0c95034b164a18b794070023
BLAKE2b-256 1613e4a604618a654ede26d61bd02adb014db3028c323df7c19a16b57f6345ea

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0ced533af0b3f58c23afa29d73511f4ee84a35a1056790b2e9abeede39db18c8
MD5 1694b5bc934bb66f38bf9e6141d0586e
BLAKE2b-256 fb414e58af50281c071fc8dd14e40834db4cd5652a99881917b9f3e2b55cb553

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d82e644be91e7f9fb90c7e0e521320a6c862a34fc398d8ec5a4e8ca780323fc6
MD5 a9312e8a8e7c1282d50b6629f853e4b3
BLAKE2b-256 3b2966f44ebdaa35cc6f352e3b221eb6f0ae9803bd3d8aec91e248cc35d41cb8

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3fb3697fd90f1b5d87a8ca29fc22d0a00b77d4432216d0afb45ba7d430d0468d
MD5 581cd4d27fb39773aebe2997820e7011
BLAKE2b-256 dde910b88366e00667982de63fbf553d969f4cc356f3a44a990d092ae83ecffe

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c19922954e8406e749798ffd8da244715ae2f109cb9c6a206ce50d605545a703
MD5 c8d84853298ebf087609b2ab631502ea
BLAKE2b-256 ba2565e1b6bb2fd1bc196c02905b4ef4bd93b547b8d5c8cd4549672984883c61

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f75e22a777e01334cec059832d5f0de01ffbaad6cd6e58cc5937063d0d4fd98d
MD5 bdb6eea58a5edef6f8f68b662167b155
BLAKE2b-256 5c41d3a4c7892481286af387ba97b79c6c5941a25480274e0396eb02dfdf5b4d

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nglpy-1.1.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 119.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 477842bae3a4a1f7d68cd9393c3b4adb0320d1e1d30bca9fac220a32b2c106f3
MD5 51a2af682b3708faccdedf1bf817ed14
BLAKE2b-256 78b6d9edd2137ae90164ad4c24f16cf8acdda8a1ab0cd95d99b5f3aaddee7d0c

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp39-cp39-win32.whl.

File metadata

  • Download URL: nglpy-1.1.6-cp39-cp39-win32.whl
  • Upload date:
  • Size: 95.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.6-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 152660c3b71a9ea9b943a61455152bdedc46bb09ae89c9d7db6c2373af0b0aaf
MD5 e79321d68335cb9095ba99a849bff01b
BLAKE2b-256 a72fcc030fdc104640d566ab2e6381d52fddb1b221685630010de350e40368a7

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ea2a2f136e84dd11bf3d143441d15644bd965adb7ffbc40692e121880496e70b
MD5 39fa9f7319b5f638ce3d8133e20bc92f
BLAKE2b-256 3c7e5b99a00275453b691e2dd12aa9cda5496225fec11855cdfaf86640399440

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 030b8d69eeba0080ffa27692a200105bdbb1177f460c4d5c92a4ee9757c43692
MD5 d052ad920c95d82cc026d7e7f34d64fb
BLAKE2b-256 43f77fe2bb156a4fd8b3da076eeb54f51f0a761fe2142916cdb542a8baa7cddc

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 884647be873838e5b96a7364eb529fb02a247f752dbf6cde2defe42e29590614
MD5 6ae1957c6ed6a372e4b201d3f0548ab8
BLAKE2b-256 6dc47ab3282d55a573532caa85d6309936c7e3deb06066f30b75586227dba1cb

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bc8a8514c493cf149ffc0a9e0073668864e395cfbf38598aed0fc69c88e9f193
MD5 704735dd904b9a3cff1616198d48c4b2
BLAKE2b-256 410c572c3b8207184e1777d7ad43874b683f96a59441f0a7b94d2c1f987b33db

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 44f17cfea739cf8d4e16e5cc98f4d00d3e6b16a50179ff411c0436c20a72a182
MD5 368e8a892f4d42b0fba2cd4e7a969c5b
BLAKE2b-256 88c56939c87979f6d23aa0731478e3ace9a6d1338d681e20c155dfb0d4937228

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nglpy-1.1.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 120.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ea17f43ab10397bf49a1ff8300d8901eb347c3d654e55da1bb99addc25a82eb4
MD5 8d472dd644b2719259318037b9b3fd86
BLAKE2b-256 d6592fe2e7afd8aff7751929c4295d9ee5390a4130aad6ff0c956c28f647523b

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp38-cp38-win32.whl.

File metadata

  • Download URL: nglpy-1.1.6-cp38-cp38-win32.whl
  • Upload date:
  • Size: 95.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.6-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 74fc4e1554d3d1e2d1927994f57ec6f1d8e9ef8f5e80bd7c67f9a958b8b1e826
MD5 e39d02f22fcc4b33946335721907399e
BLAKE2b-256 d7b7e644fa6269cfa804996f38f728e09fdea56e4d90f14780bfea2e3db60f8c

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 83117884b62faea585abbf8e09f04f7d1e073800114cdab797031ae31081d8df
MD5 336825b48fa241708c688a500108fd38
BLAKE2b-256 b6c67bb94325c3f75396dd2286217fc4046875ebae0362c2a93c3323868a02c7

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 59d9ff6dd5d37ee1fc64ba8c6420b2a3ad795026894551f18db81649d6dbce7b
MD5 fbfe9277380f0df8e93e713871141223
BLAKE2b-256 a6e9757fb025e3fb8d821dd5041dce6e5d958c6716785f56b0b23cfbd67e7f69

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 654d0d9a2b83172aa7cfc14a30d522537823181d0a6e8b95c94d02e146e830fc
MD5 9ab4a3f55822b352891c8dfd4c3974bf
BLAKE2b-256 ed6aed6942fe566bcf0274fa2291eec7989705ea70af6ab68c0be55173bb04bc

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 213dd2314d2d4aaad6dfbd61246323013e3039d48872b0a42706a44245f059d9
MD5 ecae8825c235ca3c94cbdef655d72674
BLAKE2b-256 fe843acb25d63cb6e6003e042508962af3dbd2ee7b8c9155c6cd9543d4c1c7c6

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c84779c8c266c2b929cb356ad28af8a289ee7ba46bd046da29aecc5564ab2820
MD5 480d4e1945ebb2e42b890d587132a7d1
BLAKE2b-256 1fa247d8d6839b45fe2000deefe846abe8ad3aaad41bf3a7da27565555d9dd72

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nglpy-1.1.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 119.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 63c820e88a94f57cc53c0f6b176e804bdad03260f5f8b73e0d7dce2953a15de1
MD5 b1d5b223c3f493ac1241eea7cea824d1
BLAKE2b-256 e013f44b45283191ce7403795a32d50386ac1e1b1ef5a22aa2eda3e48e5f57ec

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp37-cp37m-win32.whl.

File metadata

  • Download URL: nglpy-1.1.6-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 96.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for nglpy-1.1.6-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 12ed2464122d12117bb59f0097b29d025d86044e2a10e72dca82be8bd530ce1a
MD5 c5b2a4aa1f316f845462cb49b2ac54c6
BLAKE2b-256 ac07e74cdd5ec884f8a6df19d68ede6404ff99355919e527bb980df172f913fb

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 45506462cfe907a2c92a67a8d0e4d96347ae9175327343232288197b3e28fda6
MD5 dc82bdc6deee728ab99b73fba914cf63
BLAKE2b-256 c07cc705ffe9382d52a71550b20b1b78cbdebc300ba2f9ed5b7e5f63da0d0c33

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d9311d707b13a1b3c8c0599e7fa121ac8712aa9e06501c414d8af43fd27cb6ed
MD5 9fcd36c6cec6325e04cb750f5f87f108
BLAKE2b-256 339a1f9e2f03aabbfbefcb1da923ae7b044aa9ef77c91d8b56ad66b8fcd706f2

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1f34d74f133a9da8ed02cd708251a3d57639484daaf3b59a035e273ef6e6efc5
MD5 c20c20682c79f32720bb76e5a574b3c8
BLAKE2b-256 97bd47b32ae15d280c2fff3e0e69d4aa4f8a75c85db598628517b83abebb3d1f

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d433f32638d7dcf5dda50411cf90f515a87988cc4f3efac8678b363d6449bfa5
MD5 19893fd94f60f1d780ffd1b16d5c8b06
BLAKE2b-256 5092834dc4e54837d6e4aa89b28636eeef279e7c8a83e9cfde357cf4ab2ba4ab

See more details on using hashes here.

File details

Details for the file nglpy-1.1.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nglpy-1.1.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 54b6e3a52c13e891266225465ecf9e5dacb5278054fd9f0c99fe59f877ed111c
MD5 abe97a00a2d5add029d28e05d968fa37
BLAKE2b-256 ca25f80f084e9c642af44267950370cf52b5bee7cd75f4d861d9d5efe28e819f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page