Skip to main content

Export of FSL statistical results using NIDM as specified at http://nidm.nidash.org/specs/nidm-results.html.

Project description

NIDM-Results for FSL

Build Status

Export mass-univariate neuroimaging results computed in FSL (using FEAT) as NIDM-Results packs.

A NIDM-Results pack is a compressed file containing a NIDM-Results serialization and some or all of the referenced image data files in compliance with NIDM-Results specification.

Usage
usage: nidmfsl [-h] [-g GROUP_NAME NUM_SUBJECTS] [-o OUTPUT_NAME] [-d]
               [-n NIDM_VERSION] [--version]
               feat_dir

NIDM-Results exporter for FSL Feat.

positional arguments:
  feat_dir              Path to feat directory.

optional arguments:
  -h, --help            show this help message and exit
  -g GROUP_NAME NUM_SUBJECTS, --group GROUP_NAME NUM_SUBJECTS
                        Group label followed by number of subjects
  -o OUTPUT_NAME, --output_name OUTPUT_NAME
                        Name of the output. A ".nidm.zip" or ".nidm" (when -d
                        is used) suffix will be appended.
  -d, --directory-output
                        Produces a .nidm directory rather than a .nidm.zip
                        file.
  -n NIDM_VERSION, --nidm_version NIDM_VERSION
                        NIDM-Results version to use (default: latest).
  --version             show program's version number and exit
Installation

To install, run the below command in the bash terminal.

    pip install nidmfsl
Compatible with

FSL version 5.0.9

Testing
Requirements

To run the tests for this repository, the following must be installed

  • Git LFS. Installation instructions for Git LFS can be found here.

  • The python packages vcr and ddt. These can be installed using the below commands in the bash terminal:

pip install vcrpy
pip install ddt

In addition, the test data must also be downloaded from the nidmresults-examples repository to <path_to_this_repository>/test/data/nidmresults-examples.

git lfs clone https://github.com/incf-nidash/nidmresults-examples.git <path_to_this_repository>/test/data/nidmresults-examples
Running the tests

The below command can be used to generate the test cases.

python <path_to_this_repository>/test/export_test_battery.py

Folowing this, the test cases can be verified against the ground truth provided in the nidmresults-examples repository using the below command.

cd <path_to_this_repository>/test/
python -m unittest discover

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nidmfsl-2.2.0.tar.gz (23.0 kB view details)

Uploaded Source

Built Distribution

nidmfsl-2.2.0-py2.py3-none-any.whl (24.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file nidmfsl-2.2.0.tar.gz.

File metadata

  • Download URL: nidmfsl-2.2.0.tar.gz
  • Upload date:
  • Size: 23.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for nidmfsl-2.2.0.tar.gz
Algorithm Hash digest
SHA256 146db3bcc6f0015c9b3e6ebe43d0554dcdfe988dac1851b28cc0ff0a9691e4bd
MD5 79398aeca09bf0473045b5de5882f001
BLAKE2b-256 45cb22f6ee2e6eee9e2d6a7b59efe3a22b726ddd8a263a168921a5361a0575ad

See more details on using hashes here.

File details

Details for the file nidmfsl-2.2.0-py2.py3-none-any.whl.

File metadata

  • Download URL: nidmfsl-2.2.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 24.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for nidmfsl-2.2.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 18dbfb774ef7dc411519dfb91be106b289cf30b329e3cf8da0ad59960482fb9c
MD5 99595b7c19c28838381f70ff49e15116
BLAKE2b-256 b223a2c9f8a0ca378ae8ca9b7fb7462563f82c4f56a88cb42d825210f31ab41f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page