Skip to main content

Easy to use python package that can be used to fetch live price, closing price, stock summary,

Project description

nifpy

nifpy is an easy to use python package that can be used to fetch live price, closing price, stock summary, index list and fundamentals such as income statement, cash flow statement and balance sheet of stocks that trade on the National Stock Exchange(NSE).

Getting Started

Installation

You can install the package from Pypi

pip3 install nifpy

Dependencies

You can install the dependencies by executing the following code in your terminal

pip3 install -r requirements.txt

How to get the scrip name

You can get the scrip/symbol/ticker of the stock you want by opening the yahoo finance website and searching for the company as shown below.

Methods

Chart Center

get_live_price

This function returns the live/latest price for the symbol that has been passed as the parameter

from nifpy import *
price = get_live_price(ticker)
print(price)

""" 
Parameters
-------------------------------
ticker : Contains the symbol/ticker for which the live price will be returned
"""
#Example
price = get_live_price('ITC.NS')

get_summary

This function returns the summary of various attributes of the symbol/ticker that has been passed as the parameter

from nifpy import *
summary = get_summary(symbol)
print(summary)

""" 
Parameters
-------------------------------
tickers : Contains the symbol/ticker for which the summary of various attributes will be returned

Returns
-------------------------------
A pandas dataframe that contains various attributes of a ticker such as the:

- Previous Close
- Open
- Bid
- Ask
- Day's Range
- 52 Week Range
- Volume
- Average Volume
- Market Cap
- Beta
- P/E Ratio
- EPS
- Earnings Date
- Forward Dividend and Yield
- Ex-Dividend Date
- 1 Year Target Estimate
"""
#Example
summary = get_summary('MARUTI.NS')

get_data

This function returns the various attributes of a ticker such as the High, Low, Open, Close, Volume and Adjusted Close

from nifpy import *
data = get_data(ticker, start=TODAY-PREV, end=TODAY)
print(data)

# TODAY = datetime.date.today()
# PREV = datetime.timedelta(90)
""" 
Parameters
-------------------------------
tickers : Contains the symbol/ticker for which various attributes mentioned above will be returned

start :   Contains the starting date
          Format: 'dd/mm/yyyy' as in '27/01/2020' 
          Default: Three months from today's date

end :     Contains the end date
          Format: 'dd/mm/yyyy' as in '27/04/2021'
          Default: Today's date
Returns
-------------------------------
A pandas dataframe that contains various attributes of a ticker such as the High, Low, Open, Close, Volume
and Adjusted Close
"""
#Example
data = get_data('WIPRO.NS','27/01/2020','27/04/2021')

get_closing_price

This function returns the Closing price of a list of tickers mentioned in the parameter.

from nifpy import *
closing = get_closing_price(tickers, start=TODAY-PREV, end = TODAY)
print(closing)

# TODAY = datetime.date.today()
# PREV = datetime.timedelta(90)

""" 
Parameters
-------------------------------
tickers : Contains a list of symbols for which the closing price will be returned

start : Contains the starting date from which closing price is required

Format: 'dd/mm/yyyy' as in '25/02/2021' 
Default: Three months from today's date

end : Contains the end date till which closing price is required
          
Format: 'dd/mm/yyyy' as in '27/02/2021' 
Default: Today's date

Other than a custom list some other parameters that can be passed directly to the function are:

- get_sensex()
- get_nifty_next50()
- get_nifty_bank()
- get_nifty_auto()
- get_nifty_financial()
- get_nifty_fmcg()
- get_nifty_it()
- get_nifty_media()
- get_nifty_metal()
- get_nifty_pharma()
- get_nifty_psubank()
- get_nifty_privatebank()
- get_nifty_realty()
- get_nifty()

Returns
-------------------------------
A pandas dataframe that contains the closing price of all symbols passed as the parameter to the function
"""
#Example
stonks = ['TCS.NS', 'TITAN.NS', 'TATASTEEL.NS','ICICIBANK.NS']

closing = get_closing_price(stonks,'27/01/2021','26/02/2021')

# Or you can directly pass indexes mentioned above
closing = get_closing_price(get_nifty_bank(),'27/01/2021','26/02/2021')

get_crypto_data

This function returns the various attributes of a crypto ticker such as the High, Low, Open, Close, Volume and Adjusted Close. This is limited to the previous 100 days historical data for the coin

from nifpy import *
crypto_data = get_crypto_data(symbol)
print(crypto_data)

"""
Parameters
-------------------------------
symbol : Contains the symbol/ticker for which various attributes will be returned

Returns
-------------------------------
A pandas dataframe that contains attributes of a crypto coin such as the High,Low, Open, Close, Volume and Adjusted Close 

"""
#Example
crypto_coin = get_crypto_data('DOGE-USD')

get_balance_sheet

Used to obtain the balance sheet of the specified ticker

from nifpy import *
balance_sheet = get_balance_sheet(symbol)
print(balance_sheet)

"""
Parameters
-------------------------------
symbol : It is used to specify the symbol/ticker for   which the balance sheet has to be fetched

Returns
--------------------------------
A dataframe that contains the balance sheet of the company
"""
#Example
balance_sheet = get_balance_sheet('RELIANCE.NS')

get_cash_flow

Used to obtain the cash flow statement of the specified ticker

from nifpy import *
cash_flow = get_cash_flow(symbol)
print(cash_flow)

""" 
Parameters
-------------------------------
symbol : It is used to specify the symbol/ticker for which the cash flow has to be fetched

Returns
--------------------------------
A dataframe that contains the cash flow statement of the company
"""
#Example
cash_flow = get_cash_flow('HCLTECH.NS')

get_income_statement

Used to obtain the income statement of the specified ticker

from nifpy import *
inc_statement = get_income_statement(symbol)
print(inc_statement)

""" 
Parameters
-------------------------------
symbol : It is used to specify the symbol/ticker for which the income statement has to be fetched

Returns
--------------------------------
A dataframe that contains the income statement of the company
"""
#Example
inc_statement = get_income_statement('TITAN.NS')

Indices

  • get_nifty()
  • get_sensex()
  • get_nifty_next50()
  • get_nifty_bank()
  • get_nifty_auto()
  • get_nifty_financial()
  • get_nifty_fmcg()
  • get_nifty_it()
  • get_nifty_media()
  • get_nifty_metal()
  • get_nifty_pharma()
  • get_nifty_psubank()
  • get_nifty_privatebank()
  • get_nifty_realty()
from nifpy import *
it_stonks = get_nifty_it()
print(it_stonks)

In a similar way stocks trading in other indices are returned as a list and can be used for further analysis.

moving_avg

Used to plot the moving average of the specified ticker

from nifpy import *
moving_avg(scrip, num_days)

""" 
Parameters
-------------------------------
scrip : It is used to specify the symbol/ticker for which the moving average has to be plotted
num_days : Number of days for which moving average has to be plotted. Commonly used values
            are 14, 20, 50, 100, 200 

Returns
--------------------------------
Plot consisting of moving average along with the closing price
"""
#Example

#Moving average for 20 days
moving_avg('ITC.NS', 20)

#Moving average for 50 days
moving_avg('ITC.NS', 50)

bollinger_bands

Used to plot Bollinger Bands of the specified ticker

from nifpy import *
bollinger_bands(scrip)

""" 
Parameters
-------------------------------
scrip : Used to specify the symbol/ticker for which Bollinger Bands has to be plotted 

Returns
--------------------------------
Plot consisting of Bollinger Bands for the past 600 days
"""
#Example
bollinger_bands('DIVISLAB.NS')

get_chart

Used to get the historical chart of the specified ticker

from nifpy import *
get_chart(scrip, kind = 'line',start = TODAY-PREV, end = TODAY)

# TODAY = datetime.date.today()
# PREV = datetime.timedelta(600)

""" 
Parameters
-------------------------------
scrip : Used to specify the symbol/ticker for which historical chart has to be plotted

kind : The type of chart - 'line' or 'area'

start :   Contains the starting date
          Format: 'dd/mm/yyyy' as in '25/04/2020' 
          Default: 600 days from today's date

end :     Contains the end date
          Format: 'dd/mm/yyyy' as in '27/05/2021' 
          Default: Today's date

Returns
--------------------------------
Historical chart based on time frame
"""
#Example

#For area chart with default timeframe of 600 days
get_chart('SBIN.NS','area')

#For line chart with custom timeframe
get_chart('SBIN.NS','line','25/04/2020','27/05/2021')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nifpy-2.1.0.tar.gz (9.5 kB view details)

Uploaded Source

Built Distribution

nifpy-2.1.0-py3-none-any.whl (9.5 kB view details)

Uploaded Python 3

File details

Details for the file nifpy-2.1.0.tar.gz.

File metadata

  • Download URL: nifpy-2.1.0.tar.gz
  • Upload date:
  • Size: 9.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for nifpy-2.1.0.tar.gz
Algorithm Hash digest
SHA256 037b91b536aacbda677079c33e90ba9dc31015eb75b8f9e52bbc737b2346f77c
MD5 da19604d5cb38c5b1a44a02b53d6ae18
BLAKE2b-256 4c97e5b9f03a4400006323e50db71c1ed307dafc709fd080455978ea0bc2b13e

See more details on using hashes here.

File details

Details for the file nifpy-2.1.0-py3-none-any.whl.

File metadata

  • Download URL: nifpy-2.1.0-py3-none-any.whl
  • Upload date:
  • Size: 9.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for nifpy-2.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c1f1459269a0d8127b2acd7a332e5ce331d98cd0de3b7f407f8a4ad39cceb5a1
MD5 85b46f12899e4cfa0edddde83972aa17
BLAKE2b-256 f44853b0243898a7ce87e110e6acf0fb7497c843eff1de7aedfa30100517c846

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page