Skip to main content

Easy to use python package that can be used to fetch live price, closing price, stock summary,

Project description

nifpy

nifpy is an easy to use python package that can be used to fetch live price, closing price, stock summary, index list and fundamentals such as income statement, cash flow statement and balance sheet of stocks that trade on the National Stock Exchange(NSE).

Getting Started

Installation

You can install the package from Pypi

pip3 install nifpy

Dependencies

You can install the dependencies by executing the following code in your terminal

pip3 install -r requirements.txt

How to get the scrip name

You can get the scrip/symbol/ticker of the stock you want by opening the yahoo finance website and searching for the company as shown below.

Methods

Chart Center

get_live_price

This function returns the live/latest price for the symbol that has been passed as the parameter

from nifpy import *
price = get_live_price(ticker)
print(price)

""" 
Parameters
-------------------------------
ticker : Contains the symbol/ticker for which the live price will be returned
"""
#Example
price = get_live_price('ITC.NS')

get_summary

This function returns the summary of various attributes of the symbol/ticker that has been passed as the parameter

from nifpy import *
summary = get_summary(symbol)
print(summary)

""" 
Parameters
-------------------------------
tickers : Contains the symbol/ticker for which the summary of various attributes will be returned

Returns
-------------------------------
A pandas dataframe that contains various attributes of a ticker such as the:

- Previous Close
- Open
- Bid
- Ask
- Day's Range
- 52 Week Range
- Volume
- Average Volume
- Market Cap
- Beta
- P/E Ratio
- EPS
- Earnings Date
- Forward Dividend and Yield
- Ex-Dividend Date
- 1 Year Target Estimate
"""
#Example
summary = get_summary('MARUTI.NS')

get_data

This function returns the various attributes of a ticker such as the High, Low, Open, Close, Volume and Adjusted Close

from nifpy import *
data = get_data(ticker, start=TODAY-PREV, end=TODAY)
print(data)

# TODAY = datetime.date.today()
# PREV = datetime.timedelta(90)
""" 
Parameters
-------------------------------
tickers : Contains the symbol/ticker for which various attributes mentioned above will be returned

start :   Contains the starting date
          Format: 'dd/mm/yyyy' as in '27/01/2020' 
          Default: Three months from today's date

end :     Contains the end date
          Format: 'dd/mm/yyyy' as in '27/04/2021'
          Default: Today's date
Returns
-------------------------------
A pandas dataframe that contains various attributes of a ticker such as the High, Low, Open, Close, Volume
and Adjusted Close
"""
#Example
data = get_data('WIPRO.NS','27/01/2020','27/04/2021')

get_closing_price

This function returns the Closing price of a list of tickers mentioned in the parameter.

from nifpy import *
closing = get_closing_price(tickers, start=TODAY-PREV, end = TODAY)
print(closing)

# TODAY = datetime.date.today()
# PREV = datetime.timedelta(90)

""" 
Parameters
-------------------------------
tickers : Contains a list of symbols for which the closing price will be returned

start : Contains the starting date from which closing price is required

Format: 'dd/mm/yyyy' as in '25/02/2021' 
Default: Three months from today's date

end : Contains the end date till which closing price is required
          
Format: 'dd/mm/yyyy' as in '27/02/2021' 
Default: Today's date

Other than a custom list some other parameters that can be passed directly to the function are:

- get_sensex()
- get_nifty_next50()
- get_nifty_bank()
- get_nifty_auto()
- get_nifty_financial()
- get_nifty_fmcg()
- get_nifty_it()
- get_nifty_media()
- get_nifty_metal()
- get_nifty_pharma()
- get_nifty_psubank()
- get_nifty_privatebank()
- get_nifty_realty()
- get_nifty()

Returns
-------------------------------
A pandas dataframe that contains the closing price of all symbols passed as the parameter to the function
"""
#Example
stonks = ['TCS.NS', 'TITAN.NS', 'TATASTEEL.NS','ICICIBANK.NS']

closing = get_closing_price(stonks,'27/01/2021','26/02/2021')

# Or you can directly pass indexes mentioned above
closing = get_closing_price(get_nifty_bank(),'27/01/2021','26/02/2021')

get_crypto_data

This function returns the various attributes of a crypto ticker such as the High, Low, Open, Close, Volume and Adjusted Close. This is limited to the previous 100 days historical data for the coin

from nifpy import *
crypto_data = get_crypto_data(symbol)
print(crypto_data)

"""
Parameters
-------------------------------
symbol : Contains the symbol/ticker for which various attributes will be returned

Returns
-------------------------------
A pandas dataframe that contains attributes of a crypto coin such as the High,Low, Open, Close, Volume and Adjusted Close 

"""
#Example
crypto_coin = get_crypto_data('DOGE-USD')

get_balance_sheet

Used to obtain the balance sheet of the specified ticker

from nifpy import *
balance_sheet = get_balance_sheet(symbol)
print(balance_sheet)

"""
Parameters
-------------------------------
symbol : It is used to specify the symbol/ticker for   which the balance sheet has to be fetched

Returns
--------------------------------
A dataframe that contains the balance sheet of the company
"""
#Example
balance_sheet = get_balance_sheet('RELIANCE.NS')

get_cash_flow

Used to obtain the cash flow statement of the specified ticker

from nifpy import *
cash_flow = get_cash_flow(symbol)
print(cash_flow)

""" 
Parameters
-------------------------------
symbol : It is used to specify the symbol/ticker for which the cash flow has to be fetched

Returns
--------------------------------
A dataframe that contains the cash flow statement of the company
"""
#Example
cash_flow = get_cash_flow('HCLTECH.NS')

get_income_statement

Used to obtain the income statement of the specified ticker

from nifpy import *
inc_statement = get_income_statement(symbol)
print(inc_statement)

""" 
Parameters
-------------------------------
symbol : It is used to specify the symbol/ticker for which the income statement has to be fetched

Returns
--------------------------------
A dataframe that contains the income statement of the company
"""
#Example
inc_statement = get_income_statement('TITAN.NS')

Indices

  • get_nifty()
  • get_sensex()
  • get_nifty_next50()
  • get_nifty_bank()
  • get_nifty_auto()
  • get_nifty_financial()
  • get_nifty_fmcg()
  • get_nifty_it()
  • get_nifty_media()
  • get_nifty_metal()
  • get_nifty_pharma()
  • get_nifty_psubank()
  • get_nifty_privatebank()
  • get_nifty_realty()
from nifpy import *
it_stonks = get_nifty_it()
print(it_stonks)

In a similar way stocks trading in other indices are returned as a list and can be used for further analysis.

moving_avg

Used to plot the moving average of the specified ticker

from nifpy import *
moving_avg(scrip, num_days)

""" 
Parameters
-------------------------------
scrip : It is used to specify the symbol/ticker for which the moving average has to be plotted
num_days : Number of days for which moving average has to be plotted. Commonly used values
            are 14, 20, 50, 100, 200 

Returns
--------------------------------
Plot consisting of moving average along with the closing price
"""
#Example

#Moving average for 20 days
moving_avg('ITC.NS', 20)

#Moving average for 50 days
moving_avg('ITC.NS', 50)

bollinger_bands

Used to plot Bollinger Bands of the specified ticker

from nifpy import *
bollinger_bands(scrip)

""" 
Parameters
-------------------------------
scrip : Used to specify the symbol/ticker for which Bollinger Bands has to be plotted 

Returns
--------------------------------
Plot consisting of Bollinger Bands for the past 600 days
"""
#Example
bollinger_bands('DIVISLAB.NS')

get_chart

Used to get the historical chart of the specified ticker

from nifpy import *
get_chart(scrip, kind = 'line',start = TODAY-PREV, end = TODAY)

# TODAY = datetime.date.today()
# PREV = datetime.timedelta(600)

""" 
Parameters
-------------------------------
scrip : Used to specify the symbol/ticker for which historical chart has to be plotted

kind : The type of chart - 'line' or 'area'

start :   Contains the starting date
          Format: 'dd/mm/yyyy' as in '25/04/2020' 
          Default: 600 days from today's date

end :     Contains the end date
          Format: 'dd/mm/yyyy' as in '27/05/2021' 
          Default: Today's date

Returns
--------------------------------
Historical chart based on time frame
"""
#Example

#For area chart with default timeframe of 600 days
get_chart('SBIN.NS','area')

#For line chart with custom timeframe
get_chart('SBIN.NS','line','25/04/2020','27/05/2021')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nifpy-1.4.0.tar.gz (8.9 kB view details)

Uploaded Source

Built Distribution

nifpy-1.4.0-py3-none-any.whl (8.8 kB view details)

Uploaded Python 3

File details

Details for the file nifpy-1.4.0.tar.gz.

File metadata

  • Download URL: nifpy-1.4.0.tar.gz
  • Upload date:
  • Size: 8.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for nifpy-1.4.0.tar.gz
Algorithm Hash digest
SHA256 15841320ddc9004c15a84ece16a89a0f21073eaeb234d217f8abe01c9d5d3ab0
MD5 d6b183a49325321c32fb5628b7e57e18
BLAKE2b-256 3e0d12dd71fdd33b36d28a86ff047e98954459e1678dbc022c4b20e3165336d4

See more details on using hashes here.

File details

Details for the file nifpy-1.4.0-py3-none-any.whl.

File metadata

  • Download URL: nifpy-1.4.0-py3-none-any.whl
  • Upload date:
  • Size: 8.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for nifpy-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d10989e42e84fcc97fe4d4631c706bf5e3667cbeebe4cc4e10b65731ae6de5b2
MD5 e690e9bbcb3b3257f9bd3cc77fdd4450
BLAKE2b-256 a15ccf3ecd0627ec415f61e2c4a20ec6ba4ea79f098c3402c955486a368662a8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page