Skip to main content

Self-Supervised Neural Implicit Isotropic Volume Reconstruction

Project description

Neural Implicit Isotropic Volume Reconstruction

Getting Started

conda create -n niv python=3.9
conda activate niv
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
pip install igneous-pipeline pytorch-ignite tqdm wandb

Start and Reconnect to Training Job using tmux

tmux new -s my_training_session
python train.py -opt options/train/train_iso_em.yml

Detach from the session using Ctrl+B D.

Reconnect to the session using

tmux attach -t my_training_session

List existing tmux sessions

tmux list-sessions

Delete tmux session

tmux kill-session -t session-name

Data Access

Requires gsutil command-line utility installed. See instructions here.

Download public training data from GCS

cd neural-volumes
gsutil cp gs://neural-implicit-volumes/datasets/hemibrain-volume-denoised-large.zip ./data
cd data
unzip hemibrain-volume-denoised-large.zip

Convert reconstructed volume to NG precomputed and upload to GCS

igneous image create ./DATA.npy ./PRECOMPUTED_FOLDER --compress none
gsutil -m cp -r ./PRECOMPUTED_FOLDER/  gs://neural-implicit-volumes/NAME/

References

We used the code from following repositories: NVP, LIIF, VINR.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

niiv-0.0.5.tar.gz (20.9 kB view details)

Uploaded Source

Built Distribution

niiv-0.0.5-py3-none-any.whl (28.3 kB view details)

Uploaded Python 3

File details

Details for the file niiv-0.0.5.tar.gz.

File metadata

  • Download URL: niiv-0.0.5.tar.gz
  • Upload date:
  • Size: 20.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for niiv-0.0.5.tar.gz
Algorithm Hash digest
SHA256 c91809971bd32bf39eda02374ff9c9a67a596bc68dbb37e3e8c38ea8b65bc011
MD5 da8d77efe56ad8eb9fd9787022010b42
BLAKE2b-256 9874c65b7519fb4f0dd27b77a11f5f72b92bce2b1a513c5275af2315a3c94172

See more details on using hashes here.

File details

Details for the file niiv-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: niiv-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 28.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for niiv-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 789af6a6221dfa534849cc6a744f79f2fcf324f8ab3129eb4c429ce3e550322e
MD5 63437b9b6890f2ea81f63181ff48280a
BLAKE2b-256 44363f23038dc1844914f9c584531867e1c5590fa2014358753845fd1760de15

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page