Self-Supervised Neural Implicit Isotropic Volume Reconstruction
Project description
Neural Implicit Isotropic Volume Reconstruction
Getting Started
conda create -n niv python=3.9
conda activate niv
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
pip install igneous-pipeline pytorch-ignite tqdm wandb
Start and Reconnect to Training Job using tmux
tmux new -s my_training_session
python train.py -opt options/train/train_iso_em.yml
Detach from the session using Ctrl+B D
.
Reconnect to the session using
tmux attach -t my_training_session
List existing tmux sessions
tmux list-sessions
Delete tmux session
tmux kill-session -t session-name
Data Access
Requires gsutil
command-line utility installed. See instructions here.
Download public training data from GCS
cd neural-volumes
gsutil cp gs://neural-implicit-volumes/datasets/hemibrain-volume-denoised-large.zip ./data
cd data
unzip hemibrain-volume-denoised-large.zip
Convert reconstructed volume to NG precomputed and upload to GCS
igneous image create ./DATA.npy ./PRECOMPUTED_FOLDER --compress none
gsutil -m cp -r ./PRECOMPUTED_FOLDER/ gs://neural-implicit-volumes/NAME/
References
We used the code from following repositories: NVP, LIIF, VINR.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
niiv-0.0.5.tar.gz
(20.9 kB
view details)
Built Distribution
niiv-0.0.5-py3-none-any.whl
(28.3 kB
view details)
File details
Details for the file niiv-0.0.5.tar.gz
.
File metadata
- Download URL: niiv-0.0.5.tar.gz
- Upload date:
- Size: 20.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c91809971bd32bf39eda02374ff9c9a67a596bc68dbb37e3e8c38ea8b65bc011 |
|
MD5 | da8d77efe56ad8eb9fd9787022010b42 |
|
BLAKE2b-256 | 9874c65b7519fb4f0dd27b77a11f5f72b92bce2b1a513c5275af2315a3c94172 |
File details
Details for the file niiv-0.0.5-py3-none-any.whl
.
File metadata
- Download URL: niiv-0.0.5-py3-none-any.whl
- Upload date:
- Size: 28.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 789af6a6221dfa534849cc6a744f79f2fcf324f8ab3129eb4c429ce3e550322e |
|
MD5 | 63437b9b6890f2ea81f63181ff48280a |
|
BLAKE2b-256 | 44363f23038dc1844914f9c584531867e1c5590fa2014358753845fd1760de15 |