Skip to main content

Standardize and Automate processes

Project description

Nike CA

This package was developed informally for the Commercial Analytics Team at Nike

Before trying to use this package ensure that you have the proper access (This can be found under the "Usage" Section below)

This is a start to see about developing package to facilitate, standardize, and automate repetitive tasks

Installation and Setup

See Information about Installation, Setup, and Running
Dependencies that will automatically be installed if not already satisfied:
  • "wheel",
  • "asn1crypto==1.5.1",
  • "certifi==2022.12.7",
  • "cffi==1.15.1",
  • "charset-normalizer==2.1.1",
  • "cryptography==39.0.1",
  • "databricks==0.2",
  • "databricks-sql==1.0.0",
  • "databricks-sql-connector==2.2.1",
  • "filelock==3.9.0",
  • "gitdb==4.0.10",
  • "GitPython==3.1.31",
  • "greenlet==2.0.2",
  • "idna==3.4",
  • "jupyter-contrib-core==0.4.2",
  • "jupyter-contrib-nbextensions==0.7.0",
  • "jupyter-events==0.6.3",
  • "jupyter-highlight-selected-word==0.2.0",
  • "jupyter-nbextensions-configurator==0.6.1",
  • "jupyter-ydoc==0.2.2",
  • "jupyter_client==8.0.3",
  • "jupyter_core==5.2.0",
  • "jupyter_server==2.3.0",
  • "jupyter_server_fileid==0.8.0",
  • "jupyter_server_terminals==0.4.4",
  • "jupyter_server_ydoc==0.6.1",
  • "jupyterlab==3.6.1",
  • "jupyterlab-pygments==0.2.2",
  • "jupyterlab_server==2.19.0",
  • "lz4==4.3.2",
  • "numpy==1.23.4",
  • "oauthlib==3.2.2",
  • "oscrypto==1.3.0",
  • "pandas==1.5.3",
  • "pyarrow==10.0.1",
  • "pycparser==2.21",
  • "pycryptodomex==3.17",
  • "PyJWT==2.6.0",
  • "pyOpenSSL==23.0.0",
  • "pystache==0.6.0",
  • "python-dateutil==2.8.2",
  • "pytz==2022.7.1",
  • "requests==2.28.2",
  • "six==1.16.0",
  • "smmap==5.0.0",
  • "snowflake-connector-python==3.0.0",
  • "snowflake-sqlalchemy==1.4.6",
  • "SQLAlchemy==1.4.46",
  • "thrift==0.16.0",
  • "typing_extensions==4.5.0",
  • "urllib3==1.26.14",
  • "xcrun==0.4",
  • "configparser~=5.3.0"

Installing and Setting up a New Environment (if you are new to python start here):

Installation and Setup with a New Environment
For Mac

Note: This assumes that you already have Python 3.11.2 installed

How do I tell which version of Python I have?
  1. Launch the Terminal by typing "Terminal" in the Launchpad search field or Spotlight

  2. Enter the following command in the Terminal

python3 --version

and you should see this:

Python 3.11.2

To Install Python 3.11.2
  1. Go to https://www.python.org/downloads/

  2. Click on "Download Python 3.11.2"

  3. Open the file and click through the installation steps accepting the defaults

When running for the first time, open the Terminal and run the following commands where you want the files to be kept:
python3 -m venv venv
source venv/bin/activate
pip install --upgrade pip
pip install NikeCA
  • After running the command above, restart the terminal and proceed to the "To open Jupyter Notebook after installation (Mac)"

Installing without Setting up a New Environment:

pip Install Without Setting up a New Environment

Run the following to install:

$ python pip install NikeCA

To open Jupyter Notebook after installation (Mac)

Navigate to the installation location in the terminal and run the following:
source venv/bin/activate
jupyter notebook

Modules

NikeCA

A Module for interacting with the Databases and doing Analytics

Import

Run the following to import:

import NikeCA

Classes:

Snowflake Class

Snowflake:

Snowflake(username: str, warehouse: str, role: str, database: str = None, schema: str = None, table: str = None, column_name: str = None, col_and_or: str = 'AND', get_ex_val: bool = None, like_flag: bool = False, sample_table: bool = False, sample_val: bool = False, table_sample: dict = None, dtypes_conv = None)

Import:
from NikeCA import Snowflake
Parameters:
  • username (str): The Snowflake account username

  • warehouse (str): The Snowflake warehouse to use

  • role (str): The Snowflake role to use

  • database (str, optional, default=None): The Snowflake database to use

  • schema (str, optional, default=None): The Snowflake schema to use

  • table (str, optional, default=None): The Snowflake table to use

  • column_name (str, optional, default=None): The name of the column to search

  • col_and_or (str, optional, default=None): The AND/OR operator to use between search criteria

  • get_ex_val (bool, optional, default=None): Whether to return exact matches only

  • like_flag (bool, optional, default=None): Whether to use the LIKE operator for search criteria

Methods:

snowflake_pull() - pulls snowflake data

snowflake_pull(

self, query: str, username: str | None = None, warehouse: str | None = None, database: str | None = None, role: str | None = None, sample_table: bool = False, sample_val: bool = False, table_sample: dict | None = None, dtypes_conv: Any = None

) -> DataFrame:

Dependencies:
  • pandas
  • snowflake.connector
Parameters:
  • query (str): SQL query to run on Snowflake

    • e.g. SELECT * FROM {}
  • username (str or None, default=None): Nike Snowflake Username

  • database (str or None, default=None): Name of the Database

  • warehouse (str or None, default=None): Name of the Warehouse

  • role (str or None, default=None): Name of the role under which you are running Snowflake

  • sample_table (bool, optional, Default=False): pull only 500 records from table

  • sample_val (bool, optional, default=False)

  • table_sample (dictionary, optional, default=None)

  • dtypes_conv (any, default=None)

return: pandas.DataFrame

Run the following in python to generate a sample query:

from NikeCA import Snowflake

username = <Your Username>
warehouse = <The Name of the Warehouse>
role = <Name of Your Role>
database = <Name of the Database>

sf =  Snowflake(username=username, warehouse=warehouse, role=role, database=database)

query = 'SELECT TOP 2 * FROM  {}'

print(sf.snowflake_pull(query)) 
build_search_query() - Builds and returns a search query based on the specified parameters and instance variables

build_search_query(

self, inp_db: str | None = None, schema: str | None = None, table: str | None = None, column_name=None, like_flag: bool = False, col_and_or: str = 'AND'

) -> str

Dependencies - None

Parameters:
  • inp_db (str or None, optional, default=None): The database name to search in. If not specified, search all databases

  • schema (str or None, optional, default=None): The schema name to search in. If not specified, search all schemas

  • table (str or None, optional, default=None): The table name to search for. If not specified, search all tables

  • column_name(any, optional, default=None): The column name(s) to search for. If not specified, search all columns

    • If a list is provided, search for any columns that match any of the names in the list
  • like_flag (bool, optional, default=False)

    • If True, uses a SQL LIKE statement to search for columns that contain the specified column name(s)
      f"AND column_name like '{column_name}' " if like_flag else where_stmt + f"AND column_name = '{column_name}' "
      
    • If False, searches for exact matches to the specified column name(s)
      f"AND column_name like '{column_name}' " if like_flag else where_stmt + f"AND column_name = '{column_name}' "
      
  • col_and_or (str: optional, default='AND'): If specified and column_name is a list, determines whether to search for columns that match all or any of the names in the list. Must be one of the following values: 'AND', 'and', 'OR', 'or'.

return: string of the SQL Statement

Run the following in python to generate a sample query

from NikeCA import Snowflake

username = <Your Username>
warehouse = <The Name of the Warehouse>
role = <Name of Your Role>
database = <Name of the Database>

sf = Snowflake(username=username, warehouse=warehouse, role=role, database=database)

print(sf.build_search_query(column_name='%***%', like_flag=True))
search_schema() - Search snowflake structure for specific schemas/tables/columns

search_schema(

self, username=None, warehouse=None, database=None, role=None, sample_table: bool = False, sample_val: bool = False, table_sample: dict = None, dtypes_conv=None, schema=None, table=None, column_name=None, col_and_or='and', get_ex_val=False, like_flag=False

)

Notes: Will allow to search for tables/cols/etc. even without knowing the db if database=None

Dependencies
  • pandas
  • snowflake.connector
Parameters
  • username (str or None, default=None): Nike Snowflake Username

  • database (str or None, default=None): Name of the Database

  • warehouse (str or None, default=None): Name of the Warehouse

  • role (str or None, default=None): Name of the role under which you are running Snowflake

  • sample_table (bool, optional, Default=False): pull only 500 records from table

  • sample_val (bool, optional, default=False)

  • table_sample (dictionary, optional, default=None)

    • Notes: The below code is built within the Module

      if table_sample is not None: 
           table_sample = {'db': None, 'schema': None, 'table': None, 'col': None}
      
  • dtypes_conv (any, default=None)

  • schema (str, default=None): Snowflake schema name from any database

  • table (str, default=None): Snowflake table name

  • column_name (str, default=None): column name to filter

  • col_and_or (str, default='and'): either 'and' or 'or'

    • will use in the where statement
  • get_ex_val (bool, default=False)

  • like_flag (bool, default=False): This signifies whether the "column_name like " or "column_name = "

return: pandas.Dataframe

Run the following in python to generate a sample table:

from NikeCA import Snowflake

sf = Snowflake(username=<your username>, warehouse=<your warehouse>, 
     role=<your role>, database=<database you would like to search or none>)

sf.column_name = '*****'
sf.schema = '*****'
sf.like_flag = True

print(sf.search_schema())
snowflake_dependencies() - Searches the snowflake database and finds instances where the table is referenced and where the reference is not in the actual creation of the table itself

snowflake_dependencies(

self, tables: str | list, username: str, warehouse: str, role: str, database: str | None = None, schema: str | list | None = None

) -> pandas.DataFrame:

Note: If the table's get_ddl() is empty, it will throw an error - I will fix this soon

Dependencies
  • pandas
  • snowflake.connector
Parameters
  • tables (list | str, required): This is a list or string to check for in the database could be a table name or anything contained within the get_ddl() string

  • username (str, default=self): Username for Snowflake

  • warehouse (str, default=self): Name of the Snowflake warehouse

  • role (str, default=self): Role for Snowflake

  • database (str, required, default=self): database to search in

  • schema (str | list | None, optional, default=self): Snowflake schema to search in

    • notes: filling this in can really speed up the query

return: pandas.Dataframe

Run the following in python to generate a sample table:

import pandas as pd

username = 
warehouse =
role = 
database = 

sf = Snowflake(username=username, warehouse=warehouse, role=role, database=database)

tables = ['***', '***']
 
schema = '***'

df = sf.snowflake_dependencies(tables='***', schema=schema)

print(df)

QA Class

QA:

Import

Run the following to import:

from NikeCA import QA
Parameters
  • df (DataFrame)

  • df2 (DataFrame, optional, default=None)

  • ds1_nm (str, optional, default='Source #1')

  • ds2_nm (str, optional, default='Source #2')

  • case_sens (bool, optional, default=True)

  • print_analysis (bool, optional, default=True)

  • check_match_by (any, optional, default=None)

  • breakdown_grain (any, optional, default=None)

Methods

column_gap_analysis() - Compares 2 DataFrames and gives shape, size, matching columns, non-matching columns, coverages, and percentages

column_gap_analysis(

self, df2: pd.DataFrame = None, ds1_nm: str = 'Source #1', ds2_nm: str = 'Source #2', case_sens: bool = True, print_analysis: bool = True, check_match_by=None, breakdown_grain=None, df=None

)

Dependecnies
  • "pandas==1.5.3",
Parameters
  • df (DataFrame)

  • df2 (DataFrame, optional, default=None)

  • ds1_nm (str, optional, default='Source #1')

  • ds2_nm (str, optional, default='Source #2')

  • case_sens (bool, optional, default=True)

  • print_analysis (bool, optional, default=True)

  • check_match_by (any, optional, default=None)

  • breakdown_grain (any, optional, default=None)

return: pandas.DataFrame

Run the following in python to generate a sample query

from NikeCA import QA, Snowflake

username = <Your Username>
warehouse = <The Name of the Warehouse>
role = <Name of Your Role>
database = <Name of the Database>

sf = Snowflake(username=username, warehouse=warehouse, role=role, database=database)

df = sf.snowflake_pull(sf.build_search_query(column_name='%***%', like_flag=True))[['TABLE_CATALOG', 'TABLE_SCHEMA', 'COLUMN_NAME']]

df2 = sf.snowflake_pull(sf.build_search_query(column_name='%***%', schema='***', like_flag=True))

qa = QA(df=df, df2=df2)
print(qa.column_gap_analysis())
data_prfl_analysis() - Takes a pandas.DataFrame as an input and returns a pandas.DataFrame with certain inormation about the dataframes, such as a list of columns and data types, nulls, coverage percentage, unique values, etc.

data_prfl_analysis(

self, df: pd.DataFrame = None, ds_name: str = 'Data Source', sample_vals: int = 5, print_analysis: bool = True, show_pct_fmt: bool = True

)

Still Under Development

Dependencies
  • "pandas==1.5.3",
Parameters
  • df (DataFrame): pandas.DataFrame to be analyzed

  • ds_name (str, optional, default='Data Source'): name of the data source to be included in the output

  • sample_vals (int, optional, default=5)

  • print_analysis (bool, optional, default=True)

  • show_pct_fmt (bool, optional, default=True): show_percentage_format

return:

pandas.Dataframe with the following columns:
  • 'DATA_SOURCE'
  • 'COLUMN'
  • 'COL_DATA_TYPE'
  • 'TOTAL_ROWS'
  • 'ROW_DTYPE_CT'
  • 'PRIMARY_DTYPE_PCT'
  • 'COVERAGE_PCT', 'NULL_PCT'
  • 'DTYPE_ERROR_FLAG'
  • 'NON_NULL_ROWS'
  • 'NULL_VALUES'
  • 'UNIQUE_VALUES'
  • 'COL_VALUE_SAMPLE'
  • 'NULL_VALUE_SAMPLE'
    from NikeCA import Snowflake, QA
    
    sf = Snowflake(username=<username>, warehouse=<warehouse>, role=<role>, database=<database>)
    
    df = sf.snowflake_pull("""SELECT TOP 200 * FROM ***""")
    
    print(QA(df).data_prfl_analysis())





Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

NikeCA-0.2.13.tar.gz (37.9 kB view details)

Uploaded Source

Built Distribution

NikeCA-0.2.13-py3-none-any.whl (47.9 kB view details)

Uploaded Python 3

File details

Details for the file NikeCA-0.2.13.tar.gz.

File metadata

  • Download URL: NikeCA-0.2.13.tar.gz
  • Upload date:
  • Size: 37.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for NikeCA-0.2.13.tar.gz
Algorithm Hash digest
SHA256 67487939eca424aa317d95fa172c1f7fc8c066804bf800d57021a80082fa916f
MD5 235dcb1d59860f436ec2c5cad8bd4196
BLAKE2b-256 cb67f4f4414e5c13863ea6cf07816179595bc769956ff531d0f4b53ea9cad6af

See more details on using hashes here.

File details

Details for the file NikeCA-0.2.13-py3-none-any.whl.

File metadata

  • Download URL: NikeCA-0.2.13-py3-none-any.whl
  • Upload date:
  • Size: 47.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for NikeCA-0.2.13-py3-none-any.whl
Algorithm Hash digest
SHA256 438b403ecac3d69e8d7905cebf403d1e07eb498680ed59fbe57568bf94f6f380
MD5 8cea6e2e30e7dbba6f121e29ad4cbb91
BLAKE2b-256 038aeec757ba5b7cf288d0637fd72c3531da1f598e2dc282be73501a0ba93571

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page