Skip to main content

A tool for reading, writing and generally working with 9ML objects and files.

Project description

Unit Test Status Unit Test Coverage Supported Python versions Latest Version Documentation Status

NineML (9ML) is a language for describing the dynamics and connectivity of neuronal network simulations (http://nineml.net), which is defined by the NineML specification.

The NineML Python Library is a software package written in Python, which maps the NineML object model onto Python classes for convenient creation, manipulation and validation of NineML models, as well as handling their serialisation to and from XML, JSON, YAML, and HDF5.

Relation to the NineML Specification

The layout of the Python modules and classes in the NineML Python Library relates closely to the structure of the NineML specification (v1.0). However, there are notable exceptions where the NineML Python Library uses names and relationships that are planned to be changed in v2.0 of the specification (the NineML Python Library will be backwards compatible), such as the renaming of ComponentClass elements to separate Dynamics, ConnectionRule and RandomDistribution elements (see https://github.com/INCF/nineml/issues/94). A full list of changes planned for NineML v2.0 can be found at https://github.com/INCF/nineml/milestone/3. When serializing 9ML models the version 1.0 syntax is used unless the version=2 keyword argument is provided.

In addition to classes that directly correspond to the 9ML object model, a range of shorthand notations (“syntactic sugar”) exist to make writing 9ML models by hand more convenient (see the nineml.sugar module). These notations are frequently demonstrated in the examples directory of the repository.

The NineML Catalog

The NineML Catalog contains a collection of validated NineML models, which can be loaded and maninpulated with the NineML Python Library. If you create a model that you believe will be of wider use to the computational neuroscience community please consider contributing to the catalog via a pull request.

Installation

HDF5 (dev)

To add support to read or write HDF5 serialisations you must first install a HDF5 dev library (i.e. with the C headers).

On macOS HDF5 can be installed using Homebrew:

$ brew install hdf5

On Ubuntu/Debian HDF5 can be installed by one of the following packages:

  • libhdf5-serial-dev (serial)

  • libhdf5-openmpi-dev (parallel with Open MPI)

  • libhdf5-mpich-dev (parallel with MPICH)

If you don’t install HDF5 the other serialisation formats can still be used but you will need to install the package manually (i.e. not use pip).

Pip

The NineML Python Library can be installed using pip:

$ pip install nineml
copyright:

Copyright 20011-2017 by the NineML Python Library team, see AUTHORS.

license:

BSD 3, see LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nineml-1.0.1.tar.gz (3.8 MB view details)

Uploaded Source

Built Distribution

nineml-1.0.1-py2.py3-none-any.whl (181.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file nineml-1.0.1.tar.gz.

File metadata

  • Download URL: nineml-1.0.1.tar.gz
  • Upload date:
  • Size: 3.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.3 CPython/2.7.15

File hashes

Hashes for nineml-1.0.1.tar.gz
Algorithm Hash digest
SHA256 5a41b7a77941c051e5b0aff719dd0d39943ccd2d91ad88c6c19d3fa121cc501b
MD5 8a7f2018b303ad0434cbec143c6d8e56
BLAKE2b-256 15c254e68ec9c3e48a48e8286f71183db180aa41b172ac80de8116b8be457ae8

See more details on using hashes here.

File details

Details for the file nineml-1.0.1-py2.py3-none-any.whl.

File metadata

  • Download URL: nineml-1.0.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 181.7 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.3 CPython/2.7.15

File hashes

Hashes for nineml-1.0.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 6c807fc0a6295c07f0fb85d5f8c9ea3d536815edc9d5a96e4cd603a3982eb3b5
MD5 977f675e127c6fdeaaa17d0152919251
BLAKE2b-256 8d8c7220e71b255e9439c6f91f0147d9006e0d4c138c3d6d7877794c1e979bc4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page