Skip to main content

A python package for analysis of neuroimaging data

Project description

Neuroimaging tools for Python.

The aim of NIPY is to produce a platform-independent Python environment for the analysis of functional brain imaging data using an open development model.

In NIPY we aim to:

  1. Provide an open source, mixed language scientific programming environment suitable for rapid development.

  2. Create software components in this environment to make it easy to develop tools for MRI, EEG, PET and other modalities.

  3. Create and maintain a wide base of developers to contribute to this platform.

  4. To maintain and develop this framework as a single, easily installable bundle.

NIPY is the work of many people. We list the main authors in the file AUTHOR in the NIPY distribution, and other contributions in THANKS.

Website

Current information can always be found at the NIPY project website.

Mailing Lists

For questions on how to use nipy or on making code contributions, please see the neuroimaging mailing list:

https://mail.python.org/mailman/listinfo/neuroimaging

Please report bugs at github issues:

https://github.com/nipy/nipy/issues

You can see the list of current proposed changes at:

https://github.com/nipy/nipy/pulls

Code

You can find our sources and single-click downloads:

Tests

To run nipy’s tests, you will need to install the nose Python testing package. If you are using Python 2.7, you will also need to install the mock testing package - e.g.:

pip install nose mock

Then:

python -c "import nipy; nipy.test()"

You can also run nipy’s tests with the nipnost script in the tools directory of the nipy distribution:

./tools/nipnost nipy

nipnost is a thin wrapper around the standard nosetests program that is part of the nose package. Try nipnost --help to see a large number of command-line options.

Dependencies

To run NIPY, you will need:

You will probably also like to have:

License

We use the 3-clause BSD license; the full license is in the file LICENSE in the nipy distribution.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nipy-0.4.1.zip (2.6 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

nipy-0.4.1-cp36-cp36m-win32.whl (1.6 MB view details)

Uploaded CPython 3.6mWindows x86

nipy-0.4.1-cp36-cp36m-manylinux1_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.6m

nipy-0.4.1-cp36-cp36m-manylinux1_i686.whl (4.4 MB view details)

Uploaded CPython 3.6m

nipy-0.4.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.6mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

nipy-0.4.1-cp35-cp35m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.5mWindows x86-64

nipy-0.4.1-cp35-cp35m-win32.whl (1.6 MB view details)

Uploaded CPython 3.5mWindows x86

nipy-0.4.1-cp35-cp35m-manylinux1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.5m

nipy-0.4.1-cp35-cp35m-manylinux1_i686.whl (4.3 MB view details)

Uploaded CPython 3.5m

nipy-0.4.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.5mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

nipy-0.4.1-cp34-cp34m-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.4mWindows x86-64

nipy-0.4.1-cp34-cp34m-win32.whl (2.0 MB view details)

Uploaded CPython 3.4mWindows x86

nipy-0.4.1-cp34-cp34m-manylinux1_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.4m

nipy-0.4.1-cp34-cp34m-manylinux1_i686.whl (4.3 MB view details)

Uploaded CPython 3.4m

nipy-0.4.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.4mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

nipy-0.4.1-cp27-cp27mu-manylinux1_x86_64.whl (4.5 MB view details)

Uploaded CPython 2.7mu

nipy-0.4.1-cp27-cp27mu-manylinux1_i686.whl (4.2 MB view details)

Uploaded CPython 2.7mu

nipy-0.4.1-cp27-cp27m-win_amd64.whl (2.2 MB view details)

Uploaded CPython 2.7mWindows x86-64

nipy-0.4.1-cp27-cp27m-win32.whl (2.0 MB view details)

Uploaded CPython 2.7mWindows x86

nipy-0.4.1-cp27-cp27m-manylinux1_x86_64.whl (4.5 MB view details)

Uploaded CPython 2.7m

nipy-0.4.1-cp27-cp27m-manylinux1_i686.whl (4.2 MB view details)

Uploaded CPython 2.7m

nipy-0.4.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.6 MB view details)

Uploaded CPython 2.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

File details

Details for the file nipy-0.4.1.zip.

File metadata

  • Download URL: nipy-0.4.1.zip
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for nipy-0.4.1.zip
Algorithm Hash digest
SHA256 c5bec3cf78a4cbc2cde8945710383295100939298a616bd289939ade3ed84afc
MD5 4ca26c703d5c12cd323d6a2bc9f6796b
BLAKE2b-256 c1cd919601ca167af260a27f4129863f7b7fd1a7b3a1a4dd7f74f9c1696a4e13

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: nipy-0.4.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for nipy-0.4.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 a557e12116c38b109e6a9daffa8bd7129d43fecb70bbb30144f5205bcb1045da
MD5 30e1aa159f9a91595f4115c35b793896
BLAKE2b-256 a5726073e5621665cc7f357038aabcde559a4fcd1a7fa6d1448fc00a4c6858f0

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for nipy-0.4.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 98a06ce45af28d0750b1e161059682375977df73a4a77ecdb04ba32f0c8e2748
MD5 3050935aec1d28d65a0fc1f595273a90
BLAKE2b-256 691e677e3145038273192497841b0e6d98f3c1c7285212dbc2ca82e73c03d8e8

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for nipy-0.4.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 02fbc0b97d3bfb393eb54202d8e7e86eeedb604535199fb3166fc3bbaeee6f11
MD5 5b193f7cc9d2d7802d2997c50881ce1f
BLAKE2b-256 352e0240865c441063dc4fac9856062d2fb73959037709948a28c61f6592d1a3

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for nipy-0.4.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 67d607a0504af38c2668ee88bd36a0bf5f8149859a397fc2383ae3905927dfe9
MD5 7a1a41fc87f6d8c5479753baf37c3301
BLAKE2b-256 639e82d23375c9908a069b489e5d90593fee7000cbd6b73036dd85a6fb848cdc

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for nipy-0.4.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 732978ba23063641c55e35204a825510c31439fe8025438742245a20ea2544fc
MD5 121eb3d20a51a1265eb791ae45383684
BLAKE2b-256 1face719e13303f8e78622d6788be5f89067229961ede990713de96d7bec1f36

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: nipy-0.4.1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for nipy-0.4.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 5e8c64cd0dfaeba86be92cde270fea7a3b9024c50b74f39aff3a9d9e65b8bb24
MD5 bec85af6a5379bdd7689ed11d9f1c2c8
BLAKE2b-256 8aba90c2ecc183c753b799398d46f6572dcd8e570f895c39435bb64e67582a2a

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for nipy-0.4.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a027ed49db3eb1fd5bf24c7f52cfea55b3cc05449b5128b8ee97dcb0fff61844
MD5 3d6a5da1e09abb639004663be557db37
BLAKE2b-256 52d16374e778032f013d1bf6f57e6159acce67f2ab77f9570cdf8da1fd52a644

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for nipy-0.4.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 25a16083808a792b12f127d0e4e33ab7bf6cccaaa793ad16d40386109e8d9f54
MD5 6199e591c3ab5b36c0aa0cea90774f67
BLAKE2b-256 bd668e7e78dbb8fcc808d8ecf3c7a819d8082ba55c6712a28370da4673c7ab21

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for nipy-0.4.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 14d540b6add59f82a18d5b333f07951d4fbefd93e05110b7bdf6a4d47bac05e7
MD5 499c5e80902b6f18a70cfb0fd516b8ac
BLAKE2b-256 3877b7a665f098bbfc1e8f1564e7e53029aa0d0cc271d7661ab3fc0cdece3603

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for nipy-0.4.1-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 04b0aed93bbd68146ad3b1b3af8b735e66d4de468aa142afba0275ba04acd663
MD5 d3a793044b9d4206ed61fca68c21f979
BLAKE2b-256 5db859a8548667518602a4c165170734b4490e2db1651941116ab2197fc95152

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp34-cp34m-win32.whl.

File metadata

  • Download URL: nipy-0.4.1-cp34-cp34m-win32.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.4m, Windows x86
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for nipy-0.4.1-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 a4074b31f7ef9ef1c7f37b19c1bb49f20bd5a648f0a2e292a30c32c8474a8a46
MD5 8fadfca32c5727f7ab0575290a4e9c9b
BLAKE2b-256 65a2e7773711ebe0adebabe89424087c739cf0b90cd60faae35d0be180daab1b

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for nipy-0.4.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8fc7441adad44f0162d64954757a583a65b8e9610952881742736ffe222b8d27
MD5 34aaba454335bbd000101700c0dba5a2
BLAKE2b-256 60115d2dcb3dbd35087b19a46e1344e36418c37e7b6fd0a7aa708029f87ddd53

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for nipy-0.4.1-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a6c55fe0a835fc0957eeb3f32e5340ac3c7d48970916118b312fe8691f90a75c
MD5 79061bd43d0408c8f901972dbc40de3f
BLAKE2b-256 88939f0b2c9aab2312556159b230f47b155b819feb8761d35a00378c715cc17c

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for nipy-0.4.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 6d8db10c87c6e56897b9394305e12adcc1106aa4d549ab2885af86f3568707fe
MD5 d9eb0adbef3f1f248f7fe4cfdb01e52e
BLAKE2b-256 961b4b5d91f7891f762ed960268162361ef8984176dd80434f3ae335ff0c0911

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for nipy-0.4.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 470cfd0a6cba9ba234278a1a355acb740def56b9c3632b112c90c9df1444c88a
MD5 3722b16578f11b29ba8703d8ea4de076
BLAKE2b-256 a476e21e719e94cbba2b38f9cd68ade0c2f8ca1c05b52fc3208dd7b870b6969c

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for nipy-0.4.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ceaecd376d7e096bb3c93a19a87f33d5e66d94886b27f5d0a390b221e76762d3
MD5 c89b66ba22ddddcf25b06648b2484b75
BLAKE2b-256 e48e05a57e807667e25e8651df2bea695b686e49834b77cc9fbfd87397d9e8c1

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for nipy-0.4.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 79568d22c87ffc9393e1a48464043638dac25471ed5fc864a6bfb60d4088ccbb
MD5 309d06c571a661b1c05a8faabb796cdd
BLAKE2b-256 8160d4d7942f396b04ed2464822d51fd59846b6ff4b2a118d9651dfa20ba897b

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp27-cp27m-win32.whl.

File metadata

  • Download URL: nipy-0.4.1-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for nipy-0.4.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 ee4d3aab8443778e45f96a1de1da36c878c4a6d3527946f097675e0fda1078d8
MD5 114d12f96247dcbe0e01c79b2af74172
BLAKE2b-256 b19266471b4ec78d7b3640be621bdfe0bfe45728e44adea296c21b02fc59be46

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for nipy-0.4.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 15aaaadc7ee79efc718a60fa5194a4f989fa33aa2c12653c6e57dd2cefcee8c6
MD5 b1077eb9b290a45fa496a36c34f2e029
BLAKE2b-256 78ef9039889a49006d09cd842dad931ea04d44cce438f2070e186ef588081ff5

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for nipy-0.4.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 37c47dcf78abaaf1f977d6450c8378a9fc8a203036145f0db7d37225d368c9c0
MD5 066598bbe108baee423d0f9197f7fe26
BLAKE2b-256 0e0aaabe14d07faa749d84e3a4cf27c858a931000d55a9d744e9ed4408e633c1

See more details on using hashes here.

File details

Details for the file nipy-0.4.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for nipy-0.4.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a456269f15f06561edbf2be5cbf0e7b19321a026bc3acfb0a9c080f777cd5d71
MD5 2bd19c884a278734790328a800e29552
BLAKE2b-256 9d3345690a2c291bdbb9f680a52d9dacdd228d85cc4ed4c0d6c1d08f439c407a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page