Network Informed Restricted Vector Autoregression
Project description
NIRVAR
Network Informed Restricted Vector Autoregression
This repository contains the code and data used to obtain simulation study and applications results for the NIRVAR paper.
Note that the financial returns data is too large to store on GitHub. The data is available upon request from b.martin22@imperial.ac.uk.
Installation
You can install from pypi.org using
pip install nirvar
Alternatively, you can clone the repository using SSH or HTTPS:
git clone git@github.com:bmartin9/NIRVAR.git
or
git clone https://github.com/bmartin9/NIRVAR.git
Once cloned, change to the project root directory and install the nirvar package in edit mode using
pip install -e .
Usage
If you have installed using pip, you can import classes and functions using, for example
from nirvar.models import train_model
If you have cloned the repository from GitHub and installed it in editable mode, use src
instead of nirvar
. For example,
from src.models import train_model
Project Organization
├── LICENSE <- MIT
├── Makefile <- Makefile based on cookiecutter data-science template
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── generated <- Data generated from simulation studies
│ ├── processed <- Transformed data used for model training
│ └── raw <- The original, immutable data dump.
│
├── docs <- A default Sphinx project; see sphinx-doc.org for details
│
├── models <- Scripts for training NIRVAR/FARM/FNETS/GNAR models on application datasets.
Also contains scripts for NIRVAR simulation studies.
│
├── requirements.txt <- The requirements file for reproducing the analysis environment
│
├── setup.py <- makes project pip installable (pip install -e .) so src can be imported
├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── data <- Scripts to transform data for applications
│ └── clean_stocks.py
│ └── transform_raw_data.R
│ │
│ ├── models <- Scripts to generate simulation data, train a NIRVAR model on data, and do predictions
│ │ using trained model
│ │ ├── generativeVAR.py
│ │ └── train_model.py
| └── predict_model.py
│ │
│ └── visualization <- Scripts to visualize results
│ └── 0.3-ARI-comparisons.py
│ └── 0.3-embedding-dim.py
│ └── 0.3-SICCD-bars-plot.py
│ └── 0.3-turnover.py
│ └── 0.3-visualise-backtesting.py
│ └── factors_over_time.py
│ └── utility_funcs.py
│
└── tox.ini <- tox file with settings for running tox; see tox.readthedocs.io
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file nirvar-1.1.0.tar.gz
.
File metadata
- Download URL: nirvar-1.1.0.tar.gz
- Upload date:
- Size: 30.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7830c8b5f97a52f009e82e01f05d27b2c7c907fb5edc1b7d3d4f45c96e00bfe4 |
|
MD5 | 7e58dcdb3761812136944024f447895f |
|
BLAKE2b-256 | 21f804eaf25d66cd945484ccdb01bdd8f892a9e30afaea3bcec73da216e71523 |
File details
Details for the file nirvar-1.1.0-py3-none-any.whl
.
File metadata
- Download URL: nirvar-1.1.0-py3-none-any.whl
- Upload date:
- Size: 55.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f3f6de39789f272291993e1f7689ff8f4d80d6c5fc37c0e3ec57a047dc71bc35 |
|
MD5 | 4f178f058010963f32433e96dd4775fe |
|
BLAKE2b-256 | c1c16fd2726a417f272135d47e8af6f028240cb14fdc0bd00d928db91448ce84 |