Skip to main content

No project description provided

Project description

nl2query

Convert natural language text inputs to Pandas, MongoDB, Kusto, and Cypher(Neo4j) queries. The models used are fine-tuned versions of CodeT5+ 220m and Phi2 model.

Downloads Build Status PyPI version Support Python versions License: MIT

nl2query

Getting started

You can get nl2query from PyPI, using

python -m pip install nl2query

Example usage

1. Pandas Query

Suppose you want to convert the textual question to pandas query, follow the code below

from nl2query import PandasQuery

titanic = pd.read_csv('/path/titanic.csv')
queryfier = PandasQuery(titanic, 'titanic')

queryfier.generate_query('''list all people who paid more fare than the fare paid by 'Braund, Mr. Owen Harris' ''')
queryfier.generate_query('''find the names of passengers with age greater than 35 and containing Heath in their name''')
queryfier.generate_query('''which cabinet has average age less than 21?''') #Groupby Query

2. MongoDB Query

Suppose you want to convert the textual question to Mongo query, follow the instruction code below

MongoDB query using CodeT5

The generate_query method takes a textual query and returns a MongoDB query. It also accepts optional parameters to control the generation process, such as num_beams, max_length, repetition_penalty, length_penalty, early_stopping, top_p, top_k, and num_return_sequences.

NOTE: GPU will be required to run Phi2 as quantization is enabled using load_in_4bit.

from nl2query import MongoQuery
import pymongo # import if performing analysis using python client
keys = ['_id', 'index', 'passengerid', 'survived', 'Pclass', 'name', 'sex', 'age', 'sibsp', 'parch', 'ticket', 'fare', 'cabin', 'embarked'] #keys present in the collection to be queried.
queryfier = MongoQuery('T5', collection_keys = keys, collection_name = 'titanic')
queryfier.generate_query('''which pclass has the minimum average fare?''')

keys = ['_id', 'index', 'total_bill', 'tip', 'sex', 'smoker', 'day', 'time', 'size'] 
queryfier = MongoQuery('T5', collection_keys = keys, collection_name = 'titanic')
queryfier.generate_query('''find the day on which combined sales was highest''')

In the above code the keys can be found by running the following piece db.tips.find_one({}).keys()

MongoDB query using Phi2

The generate_query method takes a database schema and a textual query and returns a MongoDB query. It also accepts optional parameters to control the generation process, such as max_length, no_repeat_ngram_size, and repetition_penalty. The Phi2 model performs better than the CodeT5+ model.

from nl2query import MongoQuery
schema = shipwreck = '''{
  "collections": [
    {
      "name": "shipwrecks",
      "indexes": [
        {
          "key": {
            "_id": 1
          }
        },
        {
          "key": {
            "feature_type": 1
          }
        },
        {
          "key": {
            "chart": 1
          }
        },
        {
          "key": {
            "latdec": 1,
            "londec": 1
          }
        }
      ],
      "uniqueIndexes": [],
      "document": {
        "properties": {
          "_id": {
            "bsonType": "string"
          },
          "recrd": {
            "bsonType": "string"
          },
          "vesslterms": {
            "bsonType": "string"
          },
          "feature_type": {
            "bsonType": "string"
          },
          "chart": {
            "bsonType": "string"
          },
          "latdec": {
            "bsonType": "double"
          },
          "londec": {
            "bsonType": "double"
          },
          "gp_quality": {
            "bsonType": "string"
          },
          "depth": {
            "bsonType": "string"
          },
          "sounding_type": {
            "bsonType": "string"
          },
          "history": {
            "bsonType": "string"
          },
          "quasou": {
            "bsonType": "string"
          },
          "watlev": {
            "bsonType": "string"
          },
          "coordinates": {
            "bsonType": "array",
            "items": {
              "bsonType": "double"
            }
          }
        }
      }
    }
  ],
  "version": 1
}'''

queryfier = MongoQuery('Phi2')
text = 'Find the count of shipwrecks for each unique combination of "latdec" and "longdec"'
queryfier.generate_query(schema, text, max_length = 1024)

text = 'Find the total count of shipwreck for each unique category of chart'
queryfier.generate_query(schema, text, max_length = 1024)

3. Kusto Query

Suppose you want to convert the textual question to Kusto query, follow the code below

from nl2query import KustoQuery
cols = ['conference', 'sessionid', 'session_title', 'session_type', 'owner', 'participants', 'URL', 'level', 'session_location', 'starttime', 'duration', 'time_and_duration', 'kusto_affinity']

queryfier = KustoQuery(cols, 'ConferenceSessions')
queryfier.generate_query('''find the session ids which have duration greater than 10 and having Manoj Raheja as the owner''')

4. Cypher(Neo4j) Query

Suppose you want to convert the textual question to Cypher query, follow the code below

from nl2query import CypherQuery

node_labels = {'User': ['display_name', 'uuid'], 'Comment': ['score', 'link', 'uuid']}
relationships = ['COMMENTED']
queryfier = CypherQuery(node_labels, relationships)
queryfier.generate_query('list the links of all the comments done by "jose_bacoy"')

node_labels = {'Case': ['gender', 'reportdate', 'ageunit', 'reporteroccupation', 'primaryid', 'age', 'eventDate'], 'Outcome': ['code', 'outcome']}
relationships = ['RESULTED_IN']
queryfier = CypherQuery(node_labels, relationships)
queryfier.generate_query('find the outcomes of people who are female and below the age of 32')

node_labels = {'Person': ['id', 'name', 'dob']}
relationships = []
queryfier = CypherQuery(node_labels, relationships)
res = queryfier.generate_query('find the dob of people who have "Andreia" in their name')

Changelog

Refer to the CHANGELOG.md file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nl2query-0.1.8.tar.gz (9.6 kB view details)

Uploaded Source

Built Distribution

nl2query-0.1.8-py3-none-any.whl (11.7 kB view details)

Uploaded Python 3

File details

Details for the file nl2query-0.1.8.tar.gz.

File metadata

  • Download URL: nl2query-0.1.8.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.14 Linux/6.5.0-1018-azure

File hashes

Hashes for nl2query-0.1.8.tar.gz
Algorithm Hash digest
SHA256 0749fc03c4f6207652f97b77dab4f1ad6e292aebb808616707b6cf835fd40dea
MD5 2454d8a6ebf31d7f280ccd8d82da3fb0
BLAKE2b-256 c1ce1152860596e70cfe6dd776bd03e2b68b026c649e38c3c07d2ef63feeac4d

See more details on using hashes here.

Provenance

File details

Details for the file nl2query-0.1.8-py3-none-any.whl.

File metadata

  • Download URL: nl2query-0.1.8-py3-none-any.whl
  • Upload date:
  • Size: 11.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.14 Linux/6.5.0-1018-azure

File hashes

Hashes for nl2query-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 064e8d09db8d681671e17965e81283156cbd3708e608b80ff0f575af33ff6972
MD5 820a86b24520e17b7f67aa0099c9d2a4
BLAKE2b-256 6b5e8dbc9be7acbcc4417f1e6979dbd17ed011f331a721043f389a42c017bcd1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page