Knowledge graph using Spacy NLP
Project description
NLIGraphSpacy
Knowledge graph using NLP Spacy
Installation
pip install nligraphspacy
Implementation
from nligraphspacy import NLIGRAPH
nligraph = NLIGRAPH.RelationEntityExtract("She worked in the city of London")
nligraph.process_text()
# ('She', 'worked', 'London')
nligraph.get_seperate_entities()
# [{'text': 'A', 'label': ''},
# {'text': 'DAG', 'label': 'SOURCE-NODE'},
# {'text': 'is', 'label': ''},
# {'text': 'used', 'label': 'EDGE'},
# {'text': 'for', 'label': ''},
# {'text': 'organizing', 'label': ''},
# {'text': 'tasks', 'label': 'TARGET-NODE'}]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
nligraphspacy-1.1.7.tar.gz
(2.8 kB
view details)
File details
Details for the file nligraphspacy-1.1.7.tar.gz
.
File metadata
- Download URL: nligraphspacy-1.1.7.tar.gz
- Upload date:
- Size: 2.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 23342aff3f761bf501ea0d25e3175df948f1d481d70d6e796025a5ad4ea7ee0e |
|
MD5 | 49150be3c171a905b6d7c46ec50f30fa |
|
BLAKE2b-256 | f8be059b64692f80b5487dc8391e2744d865248930bdd45d5238d911e5028980 |