Common Tool for NLP
Project description
nlpcommon
nlpcommon, Python Text Tool. Python3开发。
Guide
Feature
nlpcommon is a python Open Source Toolkit for text classification. The goal is to implement text analysis algorithm, so as to achieve the use in the production environment.
nlpcommon has the characteristics of clear algorithm, high performance and customizable corpus.
Functions:
Classifier
- LogisticRegression
- Random Forest
- Decision Tree
- K-Nearest Neighbours
- Naive bayes
- Xgboost
- Support Vector Machine(SVM)
- TextCNN
- TextRNN_Att
- Fasttext
- Bert
Cluster
- MiniBatchKmeans
While providing rich functions, nlpcommon internal modules adhere to low coupling, model adherence to inert loading, dictionary publication, and easy to use.
Install
- Requirements and Installation
pip3 install nlpcommon
or
git clone https://github.com/shibing624/nlpcommon.git
cd nlpcommon
python3 setup.py install
Usage
data
Stopwrods
import sys
sys.path.append('..')
from nlpcommon import stopwords
if __name__ == '__main__':
print(len(stopwords), stopwords)
output:
2438 {'.', '大家', '孰知', '至于', './', '知道', '二话没说', '一何', '从宽', 'especially' ... }
Contact
- Issue(建议):
- 邮件我:xuming: xuming624@qq.com
- 微信我:加我微信号:xuming624, 进Python-NLP交流群,备注:姓名-公司名-NLP
Cite
如果你在研究中使用了nlpcommon,请按如下格式引用:
@software{nlpcommon,
author = {Xu Ming},
title = {nlpcommon: A Tool for Text NLP},
year = {2021},
url = {https://github.com/shibing624/nlpcommon},
}
License
授权协议为 The Apache License 2.0,可免费用做商业用途。请在产品说明中附加nlpcommon的链接和授权协议。
Contribute
项目代码还很粗糙,如果大家对代码有所改进,欢迎提交回本项目,在提交之前,注意以下两点:
- 在
tests
添加相应的单元测试 - 使用
python setup.py test
来运行所有单元测试,确保所有单测都是通过的
之后即可提交PR。
Reference
- pytextclassifier
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file nlpcommon-0.1.1.tar.gz
.
File metadata
- Download URL: nlpcommon-0.1.1.tar.gz
- Upload date:
- Size: 20.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7e62368c283cb095b492de6cf875b5cd0b6b3d6e145220b1092c21ba3dbefbfc |
|
MD5 | ac39ebaf6dee9278f47a4ce29de0fbaa |
|
BLAKE2b-256 | d927e48836505f81c1e715671276c8c1be61ff435cc9fed015a291b3e1e0872c |