Skip to main content

Data sampling library

Project description

Sampling Strategies

K-Fold cross-validation

In K-fold cross-validation, the aim is to generate K training/validation set pair, where training and validation sets on fold i do no overlap. First, we divide the dataset X into K parts as X1; X2; ... ; XK. Then for each fold i, we use Xi as the validation set and the remaining as the training set.

Possible values of K are 10 or 30. One extreme case of K-fold cross-validation is leave-one-out, where K = N and each validation set has only one instance. If we have more computation power, we can have multiple runs of K-fold cross-validation, such as 10 x 10 cross-validation or 5 x 2 cross-validation.

Bootstrapping

If we have very small datasets, we do not insist on the non-overlap of training and validation sets. In bootstrapping, we generate K multiple training sets, where each training set contains N examples (like the original dataset). To get N examples, we draw examples with replacement. For the validation set, we use the original dataset. The drawback of bootstrapping is that the bootstrap samples overlap more than the cross-validation sample, hence they are more dependent.

Video Lectures

For Developers

You can also see Cython, Java, C++, Swift, Js, or C# repository.

Requirements

Python

To check if you have a compatible version of Python installed, use the following command:

python -V

You can find the latest version of Python here.

Git

Install the latest version of Git.

Pip Install

pip3 install NlpToolkit-Sampling

Download Code

In order to work on code, create a fork from GitHub page. Use Git for cloning the code to your local or below line for Ubuntu:

git clone <your-fork-git-link>

A directory called Sampling will be created. Or you can use below link for exploring the code:

git clone https://github.com/starlangsoftware/Sampling-Py.git

Open project with Pycharm IDE

Steps for opening the cloned project:

  • Start IDE
  • Select File | Open from main menu
  • Choose Sampling-PY file
  • Select open as project option
  • Couple of seconds, dependencies will be downloaded.

Detailed Description

CrossValidation

k. eğitim kümesini elde etmek için

getTrainFold(self, k: int) -> list

k. test kümesini elde etmek için

getTestFold(self, k: int) -> list

Bootstrap

Bootstrap için BootStrap sınıfı

Bootstrap(self, instanceList: list, seed: int)

Örneğin elimizdeki veriler a adlı ArrayList'te olsun. Bu veriler üstünden bir bootstrap örneklemi tanımlamak için (5 burada rasgelelik getiren seed'i göstermektedir. 5 değiştirilerek farklı samplelar elde edilebilir)

bootstrap = Bootstrap(a, 5)

ardından üretilen sample'ı çekmek için ise

sample = bootstrap.getSample()

yazılır.

KFoldCrossValidation

K kat çapraz geçerleme için KFoldCrossValidation sınıfı

KFoldCrossValidation(self, instanceList: list, K: int, seed: int)

Örneğin elimizdeki veriler a adlı ArrayList'te olsun. Bu veriler üstünden 10 kat çapraz geçerleme yapmak için (2 burada rasgelelik getiren seed'i göstermektedir. 2 değiştirilerek farklı samplelar elde edilebilir)

kfold = KFoldCrossValidation(a, 10, 2)

ardından yukarıda belirtilen getTrainFold ve getTestFold metodları ile sırasıyla i. eğitim ve test kümeleri elde edilebilir.

StratifiedKFoldCrossValidation

Stratified K kat çapraz geçerleme için StratifiedKFoldCrossValidation sınıfı

StratifiedKFoldCrossValidation(self, instanceLists: list, K: int, seed: int)

Örneğin elimizdeki veriler a adlı ArrayList of listte olsun. Stratified bir çapraz geçerlemede sınıflara ait veriler o sınıfın oranında temsil edildikleri için her bir sınıfa ait verilerin ayrı ayrı ArrayList'te olmaları gerekmektedir. Bu veriler üstünden 30 kat çapraz geçerleme yapmak için (4 burada rasgelelik getiren seed'i göstermektedir. 4 değiştirilerek farklı samplelar elde edilebilir)

stratified = StratifiedKFoldCrossValidation(a, 30, 4)

ardından yukarıda belirtilen getTrainFold ve getTestFold metodları ile sırasıyla i. eğitim ve test kümeleri elde edilebilir.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

NlpToolkit-Sampling-1.0.7.tar.gz (16.1 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page