Skip to main content

Implementation of "Non Local Spatial and Angular Matching : Enabling higher spatial resolution diffusion MRI datasets through adaptive denoising"

Project description

Non Local Spatial and Angular Matching (NLSAM) denoising

The reference implementation for the Non Local Spatial and Angular Matching (NLSAM) denoising algorithm for diffusion MRI.

Quick links

You can find the latest documentation and installation instructions over here with a downloadable version of the documentation here.

How to install

If you have a working python setup already, the next command should give you everything you need.

pip install nlsam

You can also download the datasets used in the paper over here.

Using the NLSAM algorithm

The process is to first transform your data to Gaussian distributed signals if your dataset is Rician or Noncentral chi distributed and then proceed to the NLSAM denoising part itself.

A quickstart example call would be

nlsam_denoising dwi.nii.gz dwi_nlsam.nii.gz bvals bvecs -m mask.nii.gz

For more fine grained control and explanation of arguments, have a look at the possible command line options with nlsam_denoising --help

You can find a detailed usage example and assorted dataset to try out in the example folder.

Questions / Need help / Think this is great software?

If you need help or would like more information, don't hesitate to drop me a line at samuel.st_jean@university, where university needs to be replaced with med.lu.se

References

The NLSAM denoising algorithm itself is detailed in

St-Jean, S., Coupé, P., & Descoteaux, M. (2016). "Non Local Spatial and Angular Matching : Enabling higher spatial resolution diffusion MRI datasets through adaptive denoising" Medical Image Analysis, 32(2016), 115–130. DOI URL

The bias correction framework is a reimplementation of

Koay, CG, Özarslan, E and Basser, PJ A signal transformational framework for breaking the noise floor and its applications in MRI, Journal of Magnetic Resonance, Volume 197, Issue 2, 2009

The automatic estimation of the noise distribution is computed with

St-Jean S, De Luca A, Tax C.M.W., Viergever M.A, Leemans A. (2020) "Automated characterization of noise distributions in diffusion MRI data." Medical Image Analysis, October 2020:101758. doi:10.1016/j.media.2020.101758

And here is a premade bibtex entry.

@article{St-Jean2016a,
  author = {St-Jean, Samuel and Coup{\'{e}}, Pierrick and Descoteaux, Maxime},
  doi = {10.1016/j.media.2016.02.010},
  journal = {Medical Image Analysis},
  pages = {115--130},
  title = {{Non Local Spatial and Angular Matching : Enabling higher spatial resolution diffusion MRI datasets through adaptive denoising}},
  volume = {32},
  year = {2016}
  }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nlsam-0.7.2.tar.gz (42.1 MB view details)

Uploaded Source

Built Distributions

nlsam-0.7.2-cp312-cp312-win_amd64.whl (272.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

nlsam-0.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.28+ x86-64

nlsam-0.7.2-cp312-cp312-macosx_11_0_arm64.whl (295.1 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

nlsam-0.7.2-cp312-cp312-macosx_10_9_x86_64.whl (340.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

nlsam-0.7.2-cp311-cp311-win_amd64.whl (280.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

nlsam-0.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.28+ x86-64

nlsam-0.7.2-cp311-cp311-macosx_11_0_arm64.whl (295.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

nlsam-0.7.2-cp311-cp311-macosx_10_9_x86_64.whl (344.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

nlsam-0.7.2-cp310-cp310-win_amd64.whl (279.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

nlsam-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.28+ x86-64

nlsam-0.7.2-cp310-cp310-macosx_11_0_arm64.whl (294.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

nlsam-0.7.2-cp310-cp310-macosx_10_9_x86_64.whl (345.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

nlsam-0.7.2-cp39-cp39-win_amd64.whl (280.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

nlsam-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.28+ x86-64

nlsam-0.7.2-cp39-cp39-macosx_11_0_arm64.whl (295.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

nlsam-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl (346.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file nlsam-0.7.2.tar.gz.

File metadata

  • Download URL: nlsam-0.7.2.tar.gz
  • Upload date:
  • Size: 42.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for nlsam-0.7.2.tar.gz
Algorithm Hash digest
SHA256 99e6bccc950cc89a53cd31720e181f2ffdf76b20a770f200b61d1e69ec3c05d5
MD5 f3d1936e46196362a8f061db4e17ba6c
BLAKE2b-256 266cb83baa1169b0bbe3ec8550df2c86530e5d1663b4b9183fac4103fe96c9e2

See more details on using hashes here.

File details

Details for the file nlsam-0.7.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: nlsam-0.7.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 272.3 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for nlsam-0.7.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 26acb774b59ab1dce89484b3cf82ce6beaab77759ff79f2e46cd5047454e11bd
MD5 579d39daab2e53effad522adf594f37a
BLAKE2b-256 c5322aad7e9a56b11735c5b88cf214cf9618d886234dab9488d61896f7d6229f

See more details on using hashes here.

File details

Details for the file nlsam-0.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for nlsam-0.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b5093d97aa2959e12d977910668b37ab30971ac9f5076aa627126d0040474025
MD5 23a6675c9fc2832123455387b6d9dbe5
BLAKE2b-256 b8227f18b6b03fd320199ce17d65885f1be06910b4f5c4924dcdf85aa5ddc7aa

See more details on using hashes here.

File details

Details for the file nlsam-0.7.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nlsam-0.7.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 529ebac22f384fbd9dcbd1485b5a3207662db1b889f579daf35e0c28d3971b39
MD5 ab598585ae53131f7307476eeadfefe0
BLAKE2b-256 43f3d758b48f9ba6901294d2568dafc0f767364b802798e8624913baccabee32

See more details on using hashes here.

File details

Details for the file nlsam-0.7.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nlsam-0.7.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dbbcfdcc836c8f7d83339a923ef2b4255859fb4374194f5fa44d6945555c1184
MD5 fab0f8ccaa3f0223cc408fb9f534169f
BLAKE2b-256 064e4e67362277adddeaf66ce80b2607ccd4c54018bf5180c59a673cd7b56734

See more details on using hashes here.

File details

Details for the file nlsam-0.7.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: nlsam-0.7.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 280.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for nlsam-0.7.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 085ae8c0b3779eae3e29034c78b8056e57d2f94cafee23770826e2fad12dedf7
MD5 bfddb873e96e3b45265c28ace0f691fe
BLAKE2b-256 3e0417b6baf51e51b8c1669f67394ed71c2b2bc7d9cded478b1247525cfd3c4e

See more details on using hashes here.

File details

Details for the file nlsam-0.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for nlsam-0.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a07ebea8e7e4825e6ceea298af789836c3d15e3b29e93add73c8c0a83c1d1714
MD5 e3ff1fbc0ac411508275f870e6c62519
BLAKE2b-256 530d5af424880b0ecb46f00cc97376219dd489f12010269aeed19f758e65c18b

See more details on using hashes here.

File details

Details for the file nlsam-0.7.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nlsam-0.7.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 71afa7b33f06b7052467dc908ede39f47360e593f24f4fb26ada66d022b56b32
MD5 049300e867d9ddd96ffb7c4d0f69b223
BLAKE2b-256 210ff5775374da943864c9fb2d92a061450f6f997bc7c4175de7182d0533783c

See more details on using hashes here.

File details

Details for the file nlsam-0.7.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nlsam-0.7.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 64eb7f4c5135f1b22c7c5cc7ad696a68e52a5172db22eef9149000d8b32a5c42
MD5 71b3588677b440135a4738e14b1553aa
BLAKE2b-256 89b423202892eb0a1e42a62c494fc3a0c76670d259e0436a459f361dfad147d2

See more details on using hashes here.

File details

Details for the file nlsam-0.7.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nlsam-0.7.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 279.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for nlsam-0.7.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fc2502d00582aac2a47e3f578fcb5a7d7f18b29fdb7883b42e303bf249797989
MD5 5afd992c13f2d64bdada3adc20df7a6e
BLAKE2b-256 89707397c81517f7f1fef0f7e96433182680bb12c60c2e92af7125350a00330f

See more details on using hashes here.

File details

Details for the file nlsam-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for nlsam-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 aabf47f424789f428338bb697097e0a895088bf853efcae12be2e4c470f3ab17
MD5 ad6fa872b9c52b7233cb5cd18dad2386
BLAKE2b-256 19113f66357f734aa2c41a3561129a4f2ced358da9e16b425aacaefa87a7ecb1

See more details on using hashes here.

File details

Details for the file nlsam-0.7.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nlsam-0.7.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8c6efb2d5bdfecd9c22d3ba3a96c729657a86d5b1ef87041e096dce508bef8f8
MD5 e871fe0de17d6b22f358bc77bf0440e1
BLAKE2b-256 5ac4a8a6383cfe048a362069ad3149cd71f41524d65b279dd018663bbe64acc1

See more details on using hashes here.

File details

Details for the file nlsam-0.7.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nlsam-0.7.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 67a81d35a8f18103a225f585ece8e7fca31b90a1af49adc7c159acdc4c661ebb
MD5 a92fb19706952394d8bfc0045f26c06f
BLAKE2b-256 9235a74bf34ef0621f8bb3ea22bb62f4573dfda91761f802ed1a6291446952a0

See more details on using hashes here.

File details

Details for the file nlsam-0.7.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nlsam-0.7.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 280.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for nlsam-0.7.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ea7264ba7dc62a547fca1f1f02ffc13ec1ccfd420416e3954be2749d93c6af10
MD5 018f186d92ff86e4f51ee2b1217d0135
BLAKE2b-256 b5600c11da459f96c440d27f0b353ac0dd55ad731c2095306b7811f51ef64989

See more details on using hashes here.

File details

Details for the file nlsam-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for nlsam-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 19189d7e19ca402f07b01a05850db080b2f019e1cc49d0bfc078ba0eb5622c77
MD5 7526b328ec36e142aa01154db714e262
BLAKE2b-256 370e5b09448574cde9bdc8117cbf6546e868181e2dd7e20944cba7791947b06f

See more details on using hashes here.

File details

Details for the file nlsam-0.7.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nlsam-0.7.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d26fe5ed585a15d0d1f17964c2e17fa510a606cbfe1e00b3bdfc8032742390bf
MD5 79048d3984997bef19e779c0e9a90436
BLAKE2b-256 74f8463a3d63d101347aa61b9e6fbe622d98464c73c64d4a8752d2374f1ca26a

See more details on using hashes here.

File details

Details for the file nlsam-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nlsam-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4e23fac13ed5e4c652adf63856607ec84777dfe841d7282e2843ef555b5de154
MD5 bf61e636382145aad7427b9fa3ecc91c
BLAKE2b-256 f5ae9685dc2e70fb070679f6d18dd260cfa1a5889ea4a610a59fde42a0907ab1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page