Skip to main content

普强信息语言理解模型训练框架

Project description

NLU Trainer

nlu-trainer 是一个用于训练nlu模型的工具,它主要有以下特点:

  • 完整的命令行应用,使用方便
  • 端侧和云侧模型皆可训练
  • 中英模型皆可训练
  • ddp多卡训练
  • fasttext模型量化和导出onnx模型功能
  • 模型测试功能
  • 模型发布功能

安装

pip install nlu-trainer --upgrade -i http://192.168.130.5:5002/simple  --trusted-host 192.168.130.5 --extra-index-url https://mirrors.aliyun.com/pypi/simple/

使用

项目初始化

nlu-trainer init --name schedule_cmn

当你执行完上述命令后,你会初始化一个名为schedule_cmn的项目,项目结构如下:

schedule_cmn
├── configs
│   ├── corpus.yaml
│   ├── dataset.yaml
│   ├── docs.yaml
│   ├── intentention.yaml
│   ├── ner.yaml
│   ├── domain.yaml
|-- corpus
│   ├── abnf
│   ├── |--- run.sh
│   ├── Generator.jar
│   ├── neg_extra.txt
│   ├── pos_extra.txt

数据准备

  • corpus/abnf/目录下面编写abnf语法文件,注意:语法文件的命名必须是*.abnf,且每个文件的名称必须是意图标签名称
  • 命令行生成NLUDoc格式文档
nlu-trainer prepare docs --help
  • 生成领域训练语料
nlu-trainer prepare corpus --help
  • 生成数据集
nlu-trainer prepare dataset --help

模型训练

  • 训练意图识别模型
# 查看帮助
nlu-trainer train intention --help
# 通过配置文件训练
nlu-trainer train intention --config configs/intention.yaml
  • 训练槽位识别模型
# 查看帮助
nlu-trainer train ner --help
# 通过配置文件训练
nlu-trainer train ner --config configs/ner.yaml
  • 训练领域识别模型
# 查看帮助
nlu-trainer train domain --help
# 通过配置文件训练
nlu-trainer train domain --config configs/domain.yaml

模型测试

  • 添加领域测试用例: corpus/pos_extra中添加正向测试用例, 在corpus/neg_extra中添加负向测试用例
  • 添加nlu测试用例:
# 查看帮助
nlu-trainer test add --help
  • 列出测试用例
# 查看帮助
nlu-trainer test list --help
  • 删除测试用例
# 查看帮助
nlu-trainer test delete --help
  • 测试云端模型
# 查看帮助
nlu-trainer test cloud --help
  • 测试端侧模型
# 查看帮助
nlu-trainer test local --help
  • 推送模型
# 查看帮助
nlu-trainer push cloud --help
nlu-trainer push local --help

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nlu_trainer-0.2.1.tar.gz (367.6 kB view details)

Uploaded Source

Built Distribution

nlu_trainer-0.2.1-py3-none-any.whl (371.5 kB view details)

Uploaded Python 3

File details

Details for the file nlu_trainer-0.2.1.tar.gz.

File metadata

  • Download URL: nlu_trainer-0.2.1.tar.gz
  • Upload date:
  • Size: 367.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.4 Linux/3.10.0-1062.el7.x86_64

File hashes

Hashes for nlu_trainer-0.2.1.tar.gz
Algorithm Hash digest
SHA256 e14ea932bde4466dcd154ab908d7eedcab1d3fdd71db2bf490bf40300191c1f8
MD5 410a5accd807c5ba70850fca4311a1da
BLAKE2b-256 6bb3c53609a33db874ad1ad3a6b8b3e2c1858f97aac2d87d0fcaf4b324180d39

See more details on using hashes here.

File details

Details for the file nlu_trainer-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: nlu_trainer-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 371.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.4 Linux/3.10.0-1062.el7.x86_64

File hashes

Hashes for nlu_trainer-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5551def3c5ac266560be689708893d876c4b69e89a29a1b276ec2fba7e7cfbb8
MD5 29882fd79f008570edf8f18b583ae81d
BLAKE2b-256 8dd71ae54e61fde0ac054df44681f637eebdeb4283ca73263232b084933f32d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page