Power spectra of pure EEG from two temporarily paralysed subjects from Whitham et al 2007
Project description
Power spectra of pure EEG from two temporarily paralysed subjects.
Data from (Fig 1, B-traces):
Please cite as “Data from …” as outlined above. This has been advised by Elsevier’s Copyrights Coordinator.
Usage
To obtain the average PSD over all experiments just use the default constructor:
p = NMB_EEG_From_WhithamEtAl()
If you want to extract the PSD of dataset one do:
p = NMB_EEG_From_WhithamEtAl(1)
Obtain the power spectral density in V^2/Hz use:
psd = p.EEGVariance(f)
where f can be either a single frequency or a numpy array. The lowest permitted frequency is f_signal_min and the highest f_signal_max.
The total power of the entire frequency range from f_signal_min to f_signal_max is:
totalEEGPower = p.totalEEGPower()
Because EEGVariance(f) accepts a numpy array plotting the spectrum is simply:
f = np.linspace(p.f_signal_min,p.f_signal_max,100) plt.plot(f,p.EEGVariance(f))
Usage example
Run:
plot_paralysed_EEG_PSD.py
from the github page: https://github.com/berndporr/nmb_eeg
Credit
Bernd Porr <bernd.porr@glasgow.ac.uk>
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file nmb_eeg-1.0.tar.gz
.
File metadata
- Download URL: nmb_eeg-1.0.tar.gz
- Upload date:
- Size: 75.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: Python-urllib/3.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7f7addeb5519e3fc5f298e14e154266d2552e6d63a2a8b265b3825d743bf479c |
|
MD5 | 52773ef8fe5fb1ff7abf98c4f4ce8f3e |
|
BLAKE2b-256 | 36bf69c3edb211447ebd35f147f760736df1c09a693056e413b6e5221742672b |
File details
Details for the file nmb_eeg-1.0-py3-none-any.whl
.
File metadata
- Download URL: nmb_eeg-1.0-py3-none-any.whl
- Upload date:
- Size: 18.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: Python-urllib/3.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3edb55527bec0f1963b931b4788bff133b8f3b8844d5c461254804d0df73a5ba |
|
MD5 | 69f8a297b5cc8d937fa5f877e3eb69f7 |
|
BLAKE2b-256 | 5a59468da458a9de88ed053d7cd11b725f8a57e6ac705a5f83bc446b9f600001 |