Skip to main content

Power spectra of pure EEG from two temporarily paralysed subjects from Whitham et al 2007

Project description

Power spectra of pure EEG from two temporarily paralysed subjects.

Data from (Fig 1, B-traces):

Scalp electrical recording during paralysis: Quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG Emma M. Whitham, Kenneth J. Pope, Sean P. Fitzgibbon, Trent Lewis, C. Richard Clark, Stephen Loveless, Marita Broberg, Angus Wallace, Dylan DeLosAngeles, Peter Lillie, Andrew Hardy, Rik. Clinical Neurophysiology Volume 118, Issue 8, August 2007, Pages 1877-1888.

Please cite as “Data from …” as outlined above. This has been advised by Elsevier’s Copyrights Coordinator.

Usage

To obtain the average PSD over all experiments just use the default constructor:

p = NMB_EEG_From_WhithamEtAl()

If you want to extract the PSD of dataset one do:

p = NMB_EEG_From_WhithamEtAl(1)

Obtain the power spectral density in V^2/Hz use:

psd = p.EEGVariance(f)

where f can be either a single frequency or a numpy array. The lowest permitted frequency is f_signal_min and the highest f_signal_max.

The total power of the entire frequency range from f_signal_min to f_signal_max is:

totalEEGPower = p.totalEEGPower()

Because EEGVariance(f) accepts a numpy array plotting the spectrum is simply:

f = np.linspace(p.f_signal_min,p.f_signal_max,100)
plt.plot(f,p.EEGVariance(f))

Usage example

Run:

plot_paralysed_EEG_PSD.py

from the github page: https://github.com/berndporr/nmb_eeg

Credit

Bernd Porr <bernd.porr@glasgow.ac.uk>

https://zenodo.org/badge/529194569.svg

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nmb_eeg-1.0.tar.gz (75.0 kB view details)

Uploaded Source

Built Distribution

nmb_eeg-1.0-py3-none-any.whl (18.4 kB view details)

Uploaded Python 3

File details

Details for the file nmb_eeg-1.0.tar.gz.

File metadata

  • Download URL: nmb_eeg-1.0.tar.gz
  • Upload date:
  • Size: 75.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.8

File hashes

Hashes for nmb_eeg-1.0.tar.gz
Algorithm Hash digest
SHA256 7f7addeb5519e3fc5f298e14e154266d2552e6d63a2a8b265b3825d743bf479c
MD5 52773ef8fe5fb1ff7abf98c4f4ce8f3e
BLAKE2b-256 36bf69c3edb211447ebd35f147f760736df1c09a693056e413b6e5221742672b

See more details on using hashes here.

File details

Details for the file nmb_eeg-1.0-py3-none-any.whl.

File metadata

  • Download URL: nmb_eeg-1.0-py3-none-any.whl
  • Upload date:
  • Size: 18.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.8

File hashes

Hashes for nmb_eeg-1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3edb55527bec0f1963b931b4788bff133b8f3b8844d5c461254804d0df73a5ba
MD5 69f8a297b5cc8d937fa5f877e3eb69f7
BLAKE2b-256 5a59468da458a9de88ed053d7cd11b725f8a57e6ac705a5f83bc446b9f600001

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page