Skip to main content

A collection of neural network machine learning error metrics.

Project description

# Example Usage
```
import numpy as np
from nn_error_metrics import (
mean_absolute_percentage_error,
mean_absolute_error,
mean_squared_error,
root_mean_squared_error,
binary_cross_entropy,
categorical_correntropy,
sparse_categorical_crossentropy
)

actual = np.array([10, 20, 30, 40, 50])
predicted = np.array([12, 18, 28, 41, 48])

print("Mean Absolute Percentage Error (MAPE):", mean_absolute_percentage_error(actual, predicted))
print("Mean Absolute Error (MAE):", mean_absolute_error(actual, predicted))
print("Mean Squared Error (MSE):", mean_squared_error(actual, predicted))
print("Root Mean Squared Error (RMSE):", root_mean_squared_error(actual, predicted))

actual = np.array([1, 0, 1, 1, 0])
predicted = np.array([0.9, 0.2, 0.8, 0.6, 0.3])
print("Binary Cross Entropy (BCE):", binary_cross_entropy(actual, predicted))

actual = np.array([[0, 1], [1, 0], [0, 1], [0, 1], [1, 0]])
predicted = np.array([[0.1, 0.9], [0.8, 0.2], [0.3, 0.7], [0.6, 0.4], [0.9, 0.1]])
print("Categorical Correntropy (CC):", categorical_correntropy(actual, predicted))

actual = np.array([1, 0, 1, 1, 0])
predicted = np.array([[0.1, 0.9], [0.8, 0.2], [0.3, 0.7], [0.6, 0.4], [0.9, 0.1]])
print("Sparse Categorical Correntropy (SCC):", sparse_categorical_crossentropy(actual, predicted))

```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nn_error_metrics-1.0.1.tar.gz (2.1 kB view details)

Uploaded Source

Built Distribution

nn_error_metrics-1.0.1-py3-none-any.whl (2.8 kB view details)

Uploaded Python 3

File details

Details for the file nn_error_metrics-1.0.1.tar.gz.

File metadata

  • Download URL: nn_error_metrics-1.0.1.tar.gz
  • Upload date:
  • Size: 2.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for nn_error_metrics-1.0.1.tar.gz
Algorithm Hash digest
SHA256 9239bedd1e65913d6c93e116a6dd6b34812049a7fa614cc2e7b3fe96315c647a
MD5 58c391d2ab691f2d48e17b2f8b0faf0f
BLAKE2b-256 c667934812fb976f37f6e25cd1c7d2fbed56a79bf3d37097f5ab6545f1c6a910

See more details on using hashes here.

File details

Details for the file nn_error_metrics-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: nn_error_metrics-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 2.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for nn_error_metrics-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 aab54ca0a09ef59a99dcbf7e204d9014bd588ef940583f475b0c4f360b5aab52
MD5 54cde295baf3dcbdfe48eb85d70422c2
BLAKE2b-256 27cc3eb392132c5c3817906cbd4e2208729844b010de013da82fb4770c95ffcd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page