A collection of neural network machine learning error metrics.
Project description
# Example Usage
```
import numpy as np
from nn_error_metrics import (
mean_absolute_percentage_error,
mean_absolute_error,
mean_squared_error,
root_mean_squared_error,
binary_cross_entropy,
categorical_correntropy,
sparse_categorical_crossentropy
)
actual = np.array([10, 20, 30, 40, 50])
predicted = np.array([12, 18, 28, 41, 48])
print("Mean Absolute Percentage Error (MAPE):", mean_absolute_percentage_error(actual, predicted))
print("Mean Absolute Error (MAE):", mean_absolute_error(actual, predicted))
print("Mean Squared Error (MSE):", mean_squared_error(actual, predicted))
print("Root Mean Squared Error (RMSE):", root_mean_squared_error(actual, predicted))
actual = np.array([1, 0, 1, 1, 0])
predicted = np.array([0.9, 0.2, 0.8, 0.6, 0.3])
print("Binary Cross Entropy (BCE):", binary_cross_entropy(actual, predicted))
actual = np.array([[0, 1], [1, 0], [0, 1], [0, 1], [1, 0]])
predicted = np.array([[0.1, 0.9], [0.8, 0.2], [0.3, 0.7], [0.6, 0.4], [0.9, 0.1]])
print("Categorical Correntropy (CC):", categorical_correntropy(actual, predicted))
actual = np.array([1, 0, 1, 1, 0])
predicted = np.array([[0.1, 0.9], [0.8, 0.2], [0.3, 0.7], [0.6, 0.4], [0.9, 0.1]])
print("Sparse Categorical Correntropy (SCC):", sparse_categorical_crossentropy(actual, predicted))
```
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file nn_error_metrics-1.0.1.tar.gz
.
File metadata
- Download URL: nn_error_metrics-1.0.1.tar.gz
- Upload date:
- Size: 2.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9239bedd1e65913d6c93e116a6dd6b34812049a7fa614cc2e7b3fe96315c647a |
|
MD5 | 58c391d2ab691f2d48e17b2f8b0faf0f |
|
BLAKE2b-256 | c667934812fb976f37f6e25cd1c7d2fbed56a79bf3d37097f5ab6545f1c6a910 |
File details
Details for the file nn_error_metrics-1.0.1-py3-none-any.whl
.
File metadata
- Download URL: nn_error_metrics-1.0.1-py3-none-any.whl
- Upload date:
- Size: 2.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aab54ca0a09ef59a99dcbf7e204d9014bd588ef940583f475b0c4f360b5aab52 |
|
MD5 | 54cde295baf3dcbdfe48eb85d70422c2 |
|
BLAKE2b-256 | 27cc3eb392132c5c3817906cbd4e2208729844b010de013da82fb4770c95ffcd |