A collection of neural network machine learning error metrics.
Project description
# Example Usage
```
# Import the required functions from your package
from nn_metrics.metrics import (
mean_absolute_percentage_error,
mean_absolute_error,
mean_squared_error,
root_mean_squared_error,
binary_cross_entropy,
categorical_correntropy,
sparse_categorical_crossentropy
)
# Example usage:
actual = [10, 20, 30, 40, 50]
predicted = [12, 18, 28, 41, 48]
# Calculate and print error metrics
print("Mean Absolute Percentage Error (MAPE):", mean_absolute_percentage_error(actual, predicted))
print("Mean Absolute Error (MAE):", mean_absolute_error(actual, predicted))
print("Mean Squared Error (MSE):", mean_squared_error(actual, predicted))
print("Root Mean Squared Error (RMSE):", root_mean_squared_error(actual, predicted))
```
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file nn_error_metrics-1.0.0.tar.gz
.
File metadata
- Download URL: nn_error_metrics-1.0.0.tar.gz
- Upload date:
- Size: 2.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 45453d9f6f295d3dc4922be05171c2a266ce2ef98ec6c63d1cd09206d041459b |
|
MD5 | d2f520f48238ce2056dc2da0034ec172 |
|
BLAKE2b-256 | 69c1a037bed6f1adc178ccd93dde7decc5ce314c829a3875d90ee2c450897b16 |
File details
Details for the file nn_error_metrics-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: nn_error_metrics-1.0.0-py3-none-any.whl
- Upload date:
- Size: 2.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 55d296b87bcad502ad15e8a8ddc7192f7492630d4762f98814d648865e17d9af |
|
MD5 | 0f243eb0840368e3e071db519bd94e69 |
|
BLAKE2b-256 | 22ec5491c0670c3501c24c5e6f6c51d541983c4502e0c45285c81ab5425d389b |