Skip to main content

A collection of neural network machine learning error metrics.

Project description

# Example Usage
```
# Import the required functions from your package
from nn_metrics.metrics import (
mean_absolute_percentage_error,
mean_absolute_error,
mean_squared_error,
root_mean_squared_error,
binary_cross_entropy,
categorical_correntropy,
sparse_categorical_crossentropy
)

# Example usage:
actual = [10, 20, 30, 40, 50]
predicted = [12, 18, 28, 41, 48]

# Calculate and print error metrics
print("Mean Absolute Percentage Error (MAPE):", mean_absolute_percentage_error(actual, predicted))
print("Mean Absolute Error (MAE):", mean_absolute_error(actual, predicted))
print("Mean Squared Error (MSE):", mean_squared_error(actual, predicted))
print("Root Mean Squared Error (RMSE):", root_mean_squared_error(actual, predicted))
```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nn_metrics-1.0.0.tar.gz (1.7 kB view details)

Uploaded Source

Built Distribution

nn_metrics-1.0.0-py3-none-any.whl (2.1 kB view details)

Uploaded Python 3

File details

Details for the file nn_metrics-1.0.0.tar.gz.

File metadata

  • Download URL: nn_metrics-1.0.0.tar.gz
  • Upload date:
  • Size: 1.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for nn_metrics-1.0.0.tar.gz
Algorithm Hash digest
SHA256 049f665cbde0c0fb5a82e403d5c6f198d18625fc798ff05a501d4763e827dda3
MD5 d4f79095c595e3fdcc3a986f224c0a06
BLAKE2b-256 0f092ea6d6c13e8d7d613642ceacc0c7ce2492fe4f47ec55015314dadf4a5d94

See more details on using hashes here.

File details

Details for the file nn_metrics-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: nn_metrics-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 2.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for nn_metrics-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7406e470b956375549c7cb9328dcba558f0af8dc17d91ea62e81272a7b1b1ce7
MD5 cf77a949a758873702ae499135f5545f
BLAKE2b-256 110334731703673486885eb35d618b67cc0b2abb88b54058aef106f5cd18db79

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page