A collection of neural network machine learning error metrics.
Project description
# Example Usage
```
# Import the required functions from your package
from nn_metrics.metrics import (
mean_absolute_percentage_error,
mean_absolute_error,
mean_squared_error,
root_mean_squared_error,
binary_cross_entropy,
categorical_correntropy,
sparse_categorical_crossentropy
)
# Example usage:
actual = [10, 20, 30, 40, 50]
predicted = [12, 18, 28, 41, 48]
# Calculate and print error metrics
print("Mean Absolute Percentage Error (MAPE):", mean_absolute_percentage_error(actual, predicted))
print("Mean Absolute Error (MAE):", mean_absolute_error(actual, predicted))
print("Mean Squared Error (MSE):", mean_squared_error(actual, predicted))
print("Root Mean Squared Error (RMSE):", root_mean_squared_error(actual, predicted))
```
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
nn_metrics-1.0.0.tar.gz
(1.7 kB
view details)
Built Distribution
File details
Details for the file nn_metrics-1.0.0.tar.gz
.
File metadata
- Download URL: nn_metrics-1.0.0.tar.gz
- Upload date:
- Size: 1.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 049f665cbde0c0fb5a82e403d5c6f198d18625fc798ff05a501d4763e827dda3 |
|
MD5 | d4f79095c595e3fdcc3a986f224c0a06 |
|
BLAKE2b-256 | 0f092ea6d6c13e8d7d613642ceacc0c7ce2492fe4f47ec55015314dadf4a5d94 |
File details
Details for the file nn_metrics-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: nn_metrics-1.0.0-py3-none-any.whl
- Upload date:
- Size: 2.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7406e470b956375549c7cb9328dcba558f0af8dc17d91ea62e81272a7b1b1ce7 |
|
MD5 | cf77a949a758873702ae499135f5545f |
|
BLAKE2b-256 | 110334731703673486885eb35d618b67cc0b2abb88b54058aef106f5cd18db79 |