Skip to main content

A neural network library with a high-level API built on top of TensorFlow.

Project description

A neural network library with a high-level API built on top of TensorFlow. Most of the components are either thin wrappers or aliases for the TensorFlow components and can be freely mixed with native TensorFlow code.


<!-- TOC depthFrom:2 depthTo:3 withLinks:1 updateOnSave:1 orderedList:0 -->

- [Installation](#installation)
- [Getting Started](#getting-started)
- [Example: CNN MNIST Classifier](#example-cnn-mnist-classifier)
- [Documentation](#documentation)
- [Model Function](#model-function)
- [Activations](#activations)
- [Layers](#layers)
- [Losses](#losses)
- [Metrics](#metrics)
- [Models](#models)
- [Optimizers](#optimizers)
- [License](#license)

<!-- /TOC -->


## Installation

```sh
pip install nn
```

It is recommended to use a [virtual environment].

## Getting Started

```py
import nn
from nn.layers import Dense

# Define the network architecture - layers, number of neurons, activations etc.
def network(inputs):
hidden = Dense(50, activation=nn.relu)(inputs)
outputs = Dense(10, activation=nn.sigmoid)(hidden)
return outputs

# Configure the model parameters - loss, optimizer, evaluation metrics etc.
model = nn.models.Classifier(
network,
optimizer=nn.optimizers.SGD(0.01))

# Train the model using training data
model.train(x_train, y_train, num_epochs=30, batch_size=100)

# Evaluate the model performance on test or validation data
print(model.evaluate(x_test, y_test))

# Use the model to make predictions for new data
print(model.predict(x_test))
```

More configuration options are available:

```py
model = nn.models.Classifier(
network,
loss=nn.losses.softmax_cross_entropy,
optimizer=nn.optimizers.SGD(0.01),
metrics=[nn.metrics.accuracy],
model_dir='/tmp/my_model')
```

If a network contains only a sequence of layers, it can be written more compactly as:

```py
from nn.layers import Sequence

def network(inputs): return Sequence([
Dense(50, activation=nn.relu),
Dense(10, activation=nn.sigmoid),
])(inputs)
```

### Example: CNN MNIST Classifier

This example is based on the [MNIST example] of TensorFlow:

```py
import nn
from nn.layers import Sequence, Reshape, Flatten
from nn.layers import Conv2D, MaxPooling2D, Dense, Dropout

def network(inputs, mode): return Sequence([
Reshape([28, 28, 1]),
Conv2D(filters=32, kernel_size=[5, 5], padding='same', activation=nn.relu),
MaxPooling2D(pool_size=[2, 2], strides=2),
Conv2D(filters=64, kernel_size=[5, 5], padding='same', activation=nn.relu),
MaxPooling2D(pool_size=[2, 2], strides=2),
Flatten(),
Dense(1024, activation=nn.relu),
Dropout(rate=0.4, mode=mode),
Dense(10),
])(inputs)

model = nn.models.Classifier(
network,
loss=nn.losses.sparse_softmax_cross_entropy,
optimizer=nn.optimizers.GradientDescent(0.001),
metrics=[nn.metrics.accuracy])
```

> **Note:** `mode` parameter tells whether the model is used for training, evaluation or prediction and should be passed to `Dropout` layers.


## Documentation

### Model Function

To have more control over the model, you may define the model using a function:

```py
import nn
from nn.layers import Sequence, Dense
import tensorflow as tf

def model(features, labels, mode):
# Define the network architecture
outputs = Sequence([
Dense(50, activation=nn.relu),
Dense(10, activation=nn.sigmoid),
])(features)
predictions = tf.argmax(outputs, axis=1)

# Configure the model parameters
loss = nn.losses.softmax_cross_entropy(labels, outputs)
optimizer = nn.optimizers.GradientDescent(0.01)
accuracy = nn.metrics.accuracy(labels, predictions)

return nn.models.spec(
mode=mode,
predictions=predictions,
loss=loss,
optimizer=optimizer,
metrics={'accuracy': accuracy})

# Create the model using model function
model = nn.models.Model(model)

# Train the model
model.train(x_train, y_train, num_epochs=30, batch_size=100)
```

`nn.models.spec` helper function creates a [`tf.estimator.EstimatorSpec`][tf.estimator.EstimatorSpec] object using `mode` and other parameters.

### Activations

Aliases for [TensorFlow activation functions] are available at the package root. For example, `tf.nn.relu` is available as `nn.relu`.

### Layers

Most of the `nn.layers` are aliases for [`tf.layers`][tf.layers] except:

- Dropout
- Reshape
- Sequence

`nn.layers.Dropout` accepts `mode` as a parameter whereas `tf.layers.Dropout` accepts `training` as a parameter and their signatures are also different:

```py
nn.layers.Dropout(rate=0.4, mode=mode)(inputs)
tf.layers.Dropout(rate=0.4)(inputs, training=(mode == tf.estimator.ModeKeys.TRAIN))
```

### Losses

`nn.losses` are aliases for [`tf.losses`][tf.losses].

### Metrics

Most of the `nn.metrics` are aliases for [`tf.metrics`][tf.metrics] except:

- accuracy

`nn.metrics.accuracy` first converts `labels` and `predictions` one-hot tensors to dense tensors and then applies `tf.metrics.accuracy`.

### Models

`nn.models` are wrappers for [`tf.estimator.Estimator`][tf.estimator.Estimator] and [`tf.estimator.EstimatorSpec`][tf.estimator.EstimatorSpec].

- Classifier
- Regressor
- Model
- spec

### Optimizers

Most of the `nn.optimizers` are aliases for [TensorFlow optimizers] except:

- SGD

The word `Optimizer` is excluded from all optimizer names. For example, `GradientDescentOptimizer` of TensorFlow is available as `nn.optimizers.GradientDescent`.


## License

[MIT][license]


[license]: /LICENSE
[virtual environment]: https://docs.python.org/3/library/venv.html
[MNIST example]: https://www.tensorflow.org/tutorials/layers#building_the_cnn_mnist_classifier
[TensorFlow activation functions]: https://www.tensorflow.org/api_guides/python/nn#Activation_Functions
[tf.layers]: https://www.tensorflow.org/api_docs/python/tf/layers
[tf.losses]: https://www.tensorflow.org/api_docs/python/tf/losses
[tf.metrics]: https://www.tensorflow.org/api_docs/python/tf/metrics
[tf.estimator.Estimator]: https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator
[tf.estimator.EstimatorSpec]: https://www.tensorflow.org/api_docs/python/tf/estimator/EstimatorSpec
[TensorFlow optimizers]: https://www.tensorflow.org/api_guides/python/train#Optimizers

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nn-0.0.2.tar.gz (6.1 kB view details)

Uploaded Source

File details

Details for the file nn-0.0.2.tar.gz.

File metadata

  • Download URL: nn-0.0.2.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for nn-0.0.2.tar.gz
Algorithm Hash digest
SHA256 eff6d57ff1c8739eeba1da8a34f251b805f01423db70d70e8a8816bb33f95b78
MD5 44529b809a92d2245fdb8b9d03f52efe
BLAKE2b-256 1ca03a86eeed9e1ab97619f1a287312c5260165044265ed822e98d0e70188c2e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page