Skip to main content

A neural network compiler for AI accelerators

Project description

nncase

GitHub repository Gitee repository GitHub release

nncase is a neural network compiler for AI accelerators.

nncase 是一个为 AI 加速器设计的神经网络编译器。

技术交流 QQ 群:790699378

Telegram: nncase community

Install from binaries

从二进制安装

Download prebuilt binaries from Release.

下载预编译的二进制文件 Release

Build from source

从源码编译

Build from source

Supported operators

支持的算子

K210/K510

K230

Resources

资源

K210


Architecture

架构

nncase arch

Features

  • Supports multiple inputs and outputs and multi-branch structure
  • Static memory allocation, no heap memory acquired
  • Operators fusion and optimizations
  • Support float and quantized uint8 inference
  • Support post quantization from float model with calibration dataset
  • Flat model with zero copy loading

功能

  • 支持多输入输出网络,支持多分支结构
  • 静态内存分配,不需要堆内存
  • 算子合并和优化
  • 支持 float 和量化 uint8 推理
  • 支持训练后量化,使用浮点模型和量化校准集
  • 平坦模型,支持零拷贝加载

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nncase-2.7.0-cp310-cp310-win_amd64.whl (19.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

nncase-2.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nncase-2.7.0-cp310-cp310-macosx_10_15_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

nncase-2.7.0-cp39-cp39-win_amd64.whl (19.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

nncase-2.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nncase-2.7.0-cp39-cp39-macosx_10_15_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

nncase-2.7.0-cp38-cp38-win_amd64.whl (19.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

nncase-2.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nncase-2.7.0-cp38-cp38-macosx_10_15_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

nncase-2.7.0-cp37-cp37m-win_amd64.whl (19.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

nncase-2.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nncase-2.7.0-cp37-cp37m-macosx_10_15_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file nncase-2.7.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nncase-2.7.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.7.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 080a53e43bba3cded505d7dc8fe52ee8bf8a3d7881c71dc69b705c48c84917ba
MD5 443d4b7c7d9b75bb99db2635e738224d
BLAKE2b-256 9de37b9cda07022f3aba3ffd443e7b47ec11a2ff5e1b849378201e35dc1dc00b

See more details on using hashes here.

File details

Details for the file nncase-2.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97b418198a70a60e158ccdec94a7e096079b905e4de2378166af8534a7ede864
MD5 112758f83f68809704d49c6533a94aad
BLAKE2b-256 ef34857b43d3cc1afc29022d27386b8e2498b390739ac8739a9d5490d394af87

See more details on using hashes here.

File details

Details for the file nncase-2.7.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.7.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4686c0c801728a94c6b045be4214b419aa42df093ae0074c871233d9bb8e5be7
MD5 b39ae019326b5f0b3f2660dbd11a55e9
BLAKE2b-256 399c3d581ca98479b6cce533368dbd96eb1a36b24c1f67d86670f13254e29cf7

See more details on using hashes here.

File details

Details for the file nncase-2.7.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nncase-2.7.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.7.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d0f92ae3f6a088a503e3cc70d1bad893d54a91d364e996f1c13da543136499fb
MD5 e9a0d200d91247510a37bfd8e3c1dbbf
BLAKE2b-256 7a16bd132a50b5168af9853a0edccfbd05038c5610a015e3c3059aa5f2c13e9a

See more details on using hashes here.

File details

Details for the file nncase-2.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 594871abd7ee94b018c918fa9bb1e62ac76722ce546177296e0bd2f95e333d91
MD5 c0d0678c06bcaf81a075c328e3fbf74c
BLAKE2b-256 2d40e362efc9f058093eaaafb55e05ff6e969a3f31b3eb1d4b5f48c0f0f59dc1

See more details on using hashes here.

File details

Details for the file nncase-2.7.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.7.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c75e3e039fd4b0d5dfe2c2066dbfce618f3f03e6c80cd165e1953bdeede76e33
MD5 ea491a45b4bc2689baebae309c7d5140
BLAKE2b-256 e8ad5017c1ac322a8d75d7957650f4b333c5eb8705fcea60c082206a46639297

See more details on using hashes here.

File details

Details for the file nncase-2.7.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nncase-2.7.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.7.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 75469e11b140a7df956a86221d0464f69fd37dfb42eb031a04c4b8c28dd7683b
MD5 e332896ef2fa2675baa4c793a702f1fc
BLAKE2b-256 189ac38f7dc4c148e49e19d17d174ee7a0dbe4c6ed48cf75c60ebf45d6ed732a

See more details on using hashes here.

File details

Details for the file nncase-2.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa511092a41a7b4af9d527f581dcb0ac43de72feda308cad4eb1ad33ae2aa2c5
MD5 b0d5ef447807605ee3db2bbbc23a2b8f
BLAKE2b-256 29581afc4438f809fbe83b09daaa0a0bd102e7aa69bcc9a59874f5f3044beb56

See more details on using hashes here.

File details

Details for the file nncase-2.7.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.7.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 511cefbb1ad8917bbcba91e44526e11d59e706bb3b3f63ef2efff77a1a38d3b2
MD5 036993374b725a814ac7c9349e26d3d1
BLAKE2b-256 b14aa7da405383c815293dbb0a165778c028c77d36aa48b1f1a045c8da1b3d5d

See more details on using hashes here.

File details

Details for the file nncase-2.7.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nncase-2.7.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.7.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d17aed16d238ee3b2801dae9958dff334433b0850a36595d8411e578fabd9a9f
MD5 4fe6d002a04464cc6b5bd59fb9a3d468
BLAKE2b-256 ef6065f8d3d05b2dc1b61190dd15374d0499a46076c1e0b464b6c265ae6ae7c7

See more details on using hashes here.

File details

Details for the file nncase-2.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.7.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 38025f7ac0813421f9137954637e6809a7f585cc66ce2477d35a40b896f7f272
MD5 33e61249b607a257be9a249755433448
BLAKE2b-256 dbbbf79f0a185de37f62a1f1a24973a501d9cc64364e54ae43ea34f81f9cbc9a

See more details on using hashes here.

File details

Details for the file nncase-2.7.0-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.7.0-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 629df3e80e9e7c37de4251b3d50b7b96b9d62dd410aa91b30061bc59511d89d4
MD5 5adca1e87c03a3e0c138ec81b6496b63
BLAKE2b-256 7c88f9950f15f56ee489259b79a8437c9915955c320061075d20f254848caac3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page