Skip to main content

A neural network compiler for AI accelerators

Project description

nncase

GitHub repository Gitee repository GitHub release

nncase is a neural network compiler for AI accelerators.

nncase 是一个为 AI 加速器设计的神经网络编译器。

技术交流 QQ 群:790699378

Telegram: nncase community

Install from binaries

从二进制安装

Download prebuilt binaries from Release.

下载预编译的二进制文件 Release

Build from source

从源码编译

Build from source

Supported operators

支持的算子

K210/K510

K230

Resources

资源

K210


Architecture

架构

nncase arch

Features

  • Supports multiple inputs and outputs and multi-branch structure
  • Static memory allocation, no heap memory acquired
  • Operators fusion and optimizations
  • Support float and quantized uint8 inference
  • Support post quantization from float model with calibration dataset
  • Flat model with zero copy loading

功能

  • 支持多输入输出网络,支持多分支结构
  • 静态内存分配,不需要堆内存
  • 算子合并和优化
  • 支持 float 和量化 uint8 推理
  • 支持训练后量化,使用浮点模型和量化校准集
  • 平坦模型,支持零拷贝加载

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nncase-2.8.0-cp310-cp310-win_amd64.whl (19.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

nncase-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nncase-2.8.0-cp310-cp310-macosx_10_15_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

nncase-2.8.0-cp39-cp39-win_amd64.whl (19.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

nncase-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nncase-2.8.0-cp39-cp39-macosx_10_15_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

nncase-2.8.0-cp38-cp38-win_amd64.whl (19.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

nncase-2.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nncase-2.8.0-cp38-cp38-macosx_10_15_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

nncase-2.8.0-cp37-cp37m-win_amd64.whl (19.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

nncase-2.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nncase-2.8.0-cp37-cp37m-macosx_10_15_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file nncase-2.8.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nncase-2.8.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 40ef1681756c5924c333da0c0d08c6d6d4835e174205188611eb6af64036c208
MD5 f1b61c0199ceca151bc581fc559ee39a
BLAKE2b-256 f8a13f78163be7add62673fe05959547b573a1460830f67df6311c0c34435f7b

See more details on using hashes here.

File details

Details for the file nncase-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df8e57cac837ceb4f0f40d488191af883a3d8b23a60ce035b6f235864170c0c2
MD5 8e72e121dfb1cfdbdeb50233b73eb36a
BLAKE2b-256 daf8633483f4c9afc42dcd8988fdb3b0f04a0b7c14ea22d6a787184c57df64e7

See more details on using hashes here.

File details

Details for the file nncase-2.8.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.8.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 dc9ef380d53297b4bdfdb71cd3f3255c97c838df1eced2772274c00140f481d8
MD5 aab2ee159c7f9fc3fdc7e7b0e115bb5a
BLAKE2b-256 8a051074b442d9310f14edf3b458f4c0384605482d8cc36e247e2d85bb258a87

See more details on using hashes here.

File details

Details for the file nncase-2.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nncase-2.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 50ba38ecabe692295a84a91d17be7fdae1771fe0797f71d2414190a2705cfa81
MD5 dd96b87cac8550ff165e3b65d78dda4e
BLAKE2b-256 5c03fa645f2f0ddaa33530d4ec555b88744276a3544bdad21d71a24ee87435f9

See more details on using hashes here.

File details

Details for the file nncase-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e87be5e0c456dd2f0f1852150534d809b713d0c9992bbf26be553ed10b1418e
MD5 85e9ad42918da3eae9bfd3974f99ec8f
BLAKE2b-256 a91ae86f920f90c06911dedfcbf74fc44ee2bd3aa85bbac8932fa919d36f2481

See more details on using hashes here.

File details

Details for the file nncase-2.8.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.8.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 15beeec595b3dbdb537624bbff6b2351f4d9f9d0c10e1f55c029ace0611fae02
MD5 8cc68c3635c654dfc5e2d7f39064cc3b
BLAKE2b-256 c9b923091be47857eaa2216a7808ae2a1c346500a218d35fe0cd79f53d77e7de

See more details on using hashes here.

File details

Details for the file nncase-2.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nncase-2.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 92a0f29da86d3acb05467fc230d8ee2b11cf81d6eb5f9a1bf332354f5fcf05cd
MD5 07ae4e264fc66052c0585bfe1b5d5b71
BLAKE2b-256 ab9a0d11ef5ae451a23155aa9b8bd7655bb840beb604bd208cf98369a65d8630

See more details on using hashes here.

File details

Details for the file nncase-2.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4d900233693f3a494512a6b929618d82d21611e903c05a1775290f316b718099
MD5 4b629cc66b6af31a40c082ba957ba15d
BLAKE2b-256 5608e9bb94b1604bbe906b3c86f8cd439125be8108beff1c2f34f46ab0452e75

See more details on using hashes here.

File details

Details for the file nncase-2.8.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.8.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e7f406f4115c9dd330ad4e75ec184b61541679fbf2fca2d29d48f87d9bb5ebaa
MD5 1ba2dff51a532aba3c03409198a87ee5
BLAKE2b-256 b746484d1d885de5d1e1e7b27328f7d1fe05e6ef2a68ec69989da6f8845448a8

See more details on using hashes here.

File details

Details for the file nncase-2.8.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nncase-2.8.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.8.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bfd200ec9868e5afde0b02eae25eaef93381666f0c016e5959fcf7100704f26f
MD5 b5ebf1ae30cfe70359e4bd6076be55da
BLAKE2b-256 c69325b857840d202960bb1c6a14537ab8db3f570084c0de500cc6e44551043d

See more details on using hashes here.

File details

Details for the file nncase-2.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de415041003d92112829ec5fa4aabf35740687ab4975414e2e743368e17be2dd
MD5 4a6a6e99b25904936c81a4395d775b57
BLAKE2b-256 12c40e1d07b57140bd46a1946d45ceae174b125cb15ff79a65dfe19070bea866

See more details on using hashes here.

File details

Details for the file nncase-2.8.0-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.8.0-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e700479055f2675040e7a896dff8520d79a0677a2d4c4f62178441e9107b7bf1
MD5 04674e3824d199cc6f2217d6bae950c8
BLAKE2b-256 add9ffa682b88b35a942fc437da89b221243ae1c7b36d055362ecfddbfabc773

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page