Skip to main content

A neural network compiler for AI accelerators

Project description

nncase

GitHub repository Gitee repository GitHub release

nncase is a neural network compiler for AI accelerators.

nncase 是一个为 AI 加速器设计的神经网络编译器。

技术交流 QQ 群:790699378

Telegram: nncase community

Install from binaries

从二进制安装

Download prebuilt binaries from Release.

下载预编译的二进制文件 Release

Build from source

从源码编译

Build from source

Supported operators

支持的算子

K210/K510

K230

Resources

资源

K210


Architecture

架构

nncase arch

Features

  • Supports multiple inputs and outputs and multi-branch structure
  • Static memory allocation, no heap memory acquired
  • Operators fusion and optimizations
  • Support float and quantized uint8 inference
  • Support post quantization from float model with calibration dataset
  • Flat model with zero copy loading

功能

  • 支持多输入输出网络,支持多分支结构
  • 静态内存分配,不需要堆内存
  • 算子合并和优化
  • 支持 float 和量化 uint8 推理
  • 支持训练后量化,使用浮点模型和量化校准集
  • 平坦模型,支持零拷贝加载

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nncase-2.8.1-cp310-cp310-win_amd64.whl (19.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

nncase-2.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nncase-2.8.1-cp310-cp310-macosx_10_15_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

nncase-2.8.1-cp39-cp39-win_amd64.whl (19.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

nncase-2.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nncase-2.8.1-cp39-cp39-macosx_10_15_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

nncase-2.8.1-cp38-cp38-win_amd64.whl (19.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

nncase-2.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nncase-2.8.1-cp38-cp38-macosx_10_15_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

nncase-2.8.1-cp37-cp37m-win_amd64.whl (19.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

nncase-2.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nncase-2.8.1-cp37-cp37m-macosx_10_15_x86_64.whl (25.4 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file nncase-2.8.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nncase-2.8.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.8.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fb0ac0c45c4522ecd34074f57dacce45babf51e7f394f2abe2e44eeed8005575
MD5 9a3fbc79a6a8c7ae89d92d96344016b4
BLAKE2b-256 626af808d16ccf8f17f187d20e7204b6e9abba30aa4c0150b34e7edcad8a482c

See more details on using hashes here.

File details

Details for the file nncase-2.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2bd2545eeb30b16e038ac9a24588212dbad04253fa49ca5a5d5745ef4c1fa80e
MD5 7ab1adea7629d1566739aea842e8cf75
BLAKE2b-256 4ef73ceaeb5fa0d40dcdb16a144273c328ecba5a80764e4be848bf14fe524ee7

See more details on using hashes here.

File details

Details for the file nncase-2.8.1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.8.1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6384d77c584eb9768e54b412b1f0b6792db7313d14ad9fe91c9168a020971827
MD5 078ab5811481ac1e34af949cd1bd141e
BLAKE2b-256 5000f0ad72f8d223f7c46a28f19255e5fbbdd862b54c4678a93e4302a4881df3

See more details on using hashes here.

File details

Details for the file nncase-2.8.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nncase-2.8.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3e158026b0108dbb14dea14628e13dbccd9fa06ad1ff3bd50131fdc89492c669
MD5 356756f188c8038cf5de3bab4c00da58
BLAKE2b-256 7eb0c045c4e9b961540921c54a478dda7150b0fa2c7e394d5753e6c555aa61ca

See more details on using hashes here.

File details

Details for the file nncase-2.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26c42d0b4357c83026151722538aff7d9e3c8da1b4a0f32c696d19303c5b0054
MD5 8357cdc87020a69909dfb2e24ec13035
BLAKE2b-256 8a582c9a5a2069e1e3afd243f155c50f0222552996d7656bfaa5de0247a5ec04

See more details on using hashes here.

File details

Details for the file nncase-2.8.1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.8.1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a64dc19b596c750999559afe3a58fcbb083c8dd9bcbd2a302b79efdad0ce9975
MD5 7323ca3e65f07002261a4181c220efbb
BLAKE2b-256 78564a54baab16145d26f6841e58b546090e69ba36e11386eaefcc9f007d436b

See more details on using hashes here.

File details

Details for the file nncase-2.8.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nncase-2.8.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 10dedfd95fd0aca749bf06be11c6317c38d12b8e9a1e721171e297430db0b16c
MD5 d8f653413c30ed5291aa18cd299aec2b
BLAKE2b-256 2588b5fe9a4973e3e4f9d2908fbba89bd7ab612de9e9e503e449780f82add3a8

See more details on using hashes here.

File details

Details for the file nncase-2.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bdf562155d7737de739c0a38b0327500da4138a2a5b7a7828efc1ea33d77cffa
MD5 5600bcd7701b44e098c5e6fd8edbb612
BLAKE2b-256 27d15254bd8117df5354672ccd50c6a7a1fa40260de53b130ae7d0c9df958916

See more details on using hashes here.

File details

Details for the file nncase-2.8.1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.8.1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3b5b213b17ebe11491dfd38c3379b38c70a7101468b3af5859286cf562730cfd
MD5 e44808474de3c0a388cf7cf9f39a0a94
BLAKE2b-256 c69890c348b09f0f26e8bfa7186b2d95daa158a529e0274371be1be0e3fd488d

See more details on using hashes here.

File details

Details for the file nncase-2.8.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nncase-2.8.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.5

File hashes

Hashes for nncase-2.8.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3a85bb7952e8d87dde87ee043e2700e9ee849a4a60d0e061d18f086eefcc1bbb
MD5 cac8959bb7bf1e3678153753bdb0f346
BLAKE2b-256 4fda730c13016f5eb6cf48938c1ee28c8b619e9b1d59fc75c41eefb08abfe468

See more details on using hashes here.

File details

Details for the file nncase-2.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 31d21a50fe338e3885d55bdf530f132aa88731cc1a229c01938545b161e75a2d
MD5 a8c93679e4a5c1c97737f5bbf75e5b51
BLAKE2b-256 2730ec3d82915453f07386e88ce519a4d08d6ddc6abb383318525d442b738182

See more details on using hashes here.

File details

Details for the file nncase-2.8.1-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nncase-2.8.1-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0b1a19d9674f13834d4b8495260fa37d79397d31f5166362bf93e9e2cb4d7d26
MD5 4aee232b8c7dcd562e4e108064c5ba5c
BLAKE2b-256 1ee97e9921e2106620d7422edb80f65f85326a5898a244c0a647a708f2b3a278

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page