Skip to main content

Neural Networks Compression Framework

Project description

Neural Network Compression Framework (NNCF)

Key FeaturesInstallationDocumentationUsageTutorials and SamplesThird-party integrationModel Zoo

GitHub Release Website Apache License Version 2.0 PyPI Downloads

Neural Network Compression Framework (NNCF) provides a suite of post-training and training-time algorithms for neural networks inference optimization in OpenVINO™ with minimal accuracy drop.

NNCF is designed to work with models from PyTorch, TensorFlow, ONNX and OpenVINO™.

NNCF provides samples that demonstrate the usage of compression algorithms for different use cases and models. Compression results achievable with the NNCF-powered samples can be found in a table at the end of this document.

The framework is organized as a Python* package that can be built and used in a standalone mode. The framework architecture is unified to make it easy to add different compression algorithms for both PyTorch and TensorFlow deep learning frameworks.

Key Features

Post-Training Compression Algorithms

Compression algorithm OpenVINO PyTorch TensorFlow ONNX
Post-Training Quantization Supported Supported Supported Supported

Training-Time Compression Algorithms

Compression algorithm PyTorch TensorFlow
Quantization Aware Training Supported Supported
Mixed-Precision Quantization Supported Not supported
Binarization Supported Not supported
Sparsity Supported Supported
Filter pruning Supported Supported
Movement pruning Experimental Not supported
  • Automatic, configurable model graph transformation to obtain the compressed model.

    NOTE: Limited support for TensorFlow models. The models created using Sequential or Keras Functional API are only supported.

  • Common interface for compression methods.
  • GPU-accelerated layers for faster compressed model fine-tuning.
  • Distributed training support.
  • Git patch for prominent third-party repository (huggingface-transformers) demonstrating the process of integrating NNCF into custom training pipelines
  • Seamless combination of pruning, sparsity and quantization algorithms. Please refer to optimum-intel for examples of joint (movement) pruning, quantization and distillation (JPQD), end-to-end from NNCF optimization to compressed OpenVINO IR.
  • Exporting PyTorch compressed models to ONNX* checkpoints and TensorFlow compressed models to SavedModel or Frozen Graph format, ready to use with OpenVINO™ toolkit.
  • Support for Accuracy-Aware model training pipelines via the Adaptive Compression Level Training and Early Exit Training.

Documentation

This documentation covers detailed information about NNCF algorithms and functions needed for the contribution to NNCF.

The latest user documentation for NNCF is available here.

NNCF API documentation can be found here.

Usage

Post-Training Quantization

The NNCF PTQ is the simplest way to apply 8-bit quantization. To run the algorithm you only need your model and a small (~300 samples) calibration dataset.

OpenVINO is the preferred backend to run PTQ with, and PyTorch, TensorFlow and ONNX are also supported.

OpenVINO
import nncf
import openvino.runtime as ov
import torch
from torchvision import datasets

# Instantiate your uncompressed model
model = ov.Core().read_model("/model_path")
# Provide validation part of the dataset to collect statistics needed for the compression algorithm
val_dataset = datasets.ImageFolder("/path")
dataset_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1)

# Step 1: Initialize transformation function
def transform_fn(data_item):
    images, _ = data_item
    return images

# Step 2: Initialize NNCF Dataset
calibration_dataset = nncf.Dataset(dataset_loader, transform_fn)
# Step 3: Run the quantization pipeline
quantized_model = nncf.quantize(model, calibration_dataset)
PyTorch
import nncf
import torch
from torchvision import datasets, models

# Instantiate your uncompressed model
model = models.mobilenet_v2() 
# Provide validation part of the dataset to collect statistics needed for the compression algorithm
val_dataset = datasets.ImageFolder("/path")
dataset_loader = torch.utils.data.DataLoader(val_dataset)

# Step 1: Initialize the transformation function
def transform_fn(data_item):
    images, _ = data_item
    return images

# Step 2: Initialize NNCF Dataset
calibration_dataset = nncf.Dataset(dataset_loader, transform_fn)
# Step 3: Run the quantization pipeline
quantized_model = nncf.quantize(model, calibration_dataset)
TensorFlow
import nncf
import tensorflow as tf
import tensorflow_datasets as tfds

# Instantiate your uncompressed model
model = tf.keras.applications.MobileNetV2()
# Provide validation part of the dataset to collect statistics needed for the compression algorithm
val_dataset = tfds.load("/path", split="validation", 
                        shuffle_files=False, as_supervised=True)

# Step 1: Initialize transformation function
def transform_fn(data_item):
    images, _ = data_item
    return images

# Step 2: Initialize NNCF Dataset
calibration_dataset = nncf.Dataset(val_dataset, transform_fn)
# Step 3: Run the quantization pipeline
quantized_model = nncf.quantize(model, calibration_dataset)
ONNX
import onnx
import nncf
import torch
from torchvision import datasets

# Instantiate your uncompressed model
onnx_model = onnx.load_model("/model_path")
# Provide validation part of the dataset to collect statistics needed for the compression algorithm
val_dataset = datasets.ImageFolder("/path")
dataset_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1)

# Step 1: Initialize transformation function
input_name = onnx_model.graph.input[0].name
def transform_fn(data_item):
    images, _ = data_item
    return {input_name: images.numpy()}

# Step 2: Initialize NNCF Dataset
calibration_dataset = nncf.Dataset(dataset_loader, transform_fn)
# Step 3: Run the quantization pipeline
quantized_model = nncf.quantize(onnx_model, calibration_dataset)

Training-Time Compression

Below is an example of Accuracy Aware Quantization pipeline where model weights and compression parameters may be fine-tuned to achieve a higher accuracy.

PyTorch
import torch
import nncf.torch  # Important - must be imported before any other external package that depends on torch

from nncf import NNCFConfig
from nncf.torch import create_compressed_model, register_default_init_args

# Instantiate your uncompressed model
from torchvision.models.resnet import resnet50
model = resnet50()

# Load a configuration file to specify compression
nncf_config = NNCFConfig.from_json("resnet50_int8.json")

# Provide data loaders for compression algorithm initialization, if necessary
import torchvision.datasets as datasets
representative_dataset = datasets.ImageFolder("/path")
init_loader = torch.utils.data.DataLoader(representative_dataset)
nncf_config = register_default_init_args(nncf_config, init_loader)

# Apply the specified compression algorithms to the model
compression_ctrl, compressed_model = create_compressed_model(model, nncf_config)

# Now use compressed_model as a usual torch.nn.Module 
# to fine-tune compression parameters along with the model weights

# ... the rest of the usual PyTorch-powered training pipeline

# Export to ONNX or .pth when done fine-tuning
compression_ctrl.export_model("compressed_model.onnx")
torch.save(compressed_model.state_dict(), "compressed_model.pth")

NOTE (PyTorch): Due to the way NNCF works within the PyTorch backend, import nncf must be done before any other import of torch in your package or in third-party packages that your code utilizes, otherwise the compression may be applied incompletely.

Tensorflow
import tensorflow as tf

from nncf import NNCFConfig
from nncf.tensorflow import create_compressed_model, register_default_init_args

# Instantiate your uncompressed model
from tensorflow.keras.applications import ResNet50
model = ResNet50()

# Load a configuration file to specify compression
nncf_config = NNCFConfig.from_json("resnet50_int8.json")

# Provide dataset for compression algorithm initialization
representative_dataset = tf.data.Dataset.list_files("/path/*.jpeg")
nncf_config = register_default_init_args(nncf_config, representative_dataset, batch_size=1)

# Apply the specified compression algorithms to the model
compression_ctrl, compressed_model = create_compressed_model(model, nncf_config)

# Now use compressed_model as a usual Keras model
# to fine-tune compression parameters along with the model weights

# ... the rest of the usual TensorFlow-powered training pipeline

# Export to Frozen Graph, TensorFlow SavedModel or .h5  when done fine-tuning 
compression_ctrl.export_model("compressed_model.pb", save_format="frozen_graph")

For a more detailed description of NNCF usage in your training code, see this tutorial.

Model Compression Tutorials and Samples

For a quicker start with NNCF-powered compression, try sample notebooks and scripts presented below.

Model Compression Tutorials

A collection of ready-to-run Jupyter* notebooks are available to demonstrate how to use NNCF compression algorithms to optimize models for inference with the OpenVINO Toolkit:

Post-Training Quantization Samples

Compact scripts demonstrating quantization and corresponding inference speed boost:

Training-Time Compression Samples

These examples provide full pipelines including compression, training and inference for classification, object detection and segmentation tasks.

Third-party repository integration

NNCF may be straightforwardly integrated into training/evaluation pipelines of third-party repositories.

Used by

  • OpenVINO Training Extensions

    NNCF is integrated into OpenVINO Training Extensions as model optimization backend. So you can train, optimize and export new models based on the available model templates as well as run exported models with OpenVINO.

  • HuggingFace Optimum Intel

    NNCF is used as a compression backend within the renowned transformers repository in HuggingFace Optimum Intel.

Git patches for third-party repository

See third_party_integration for examples of code modifications (Git patches and base commit IDs are provided) that are necessary to integrate NNCF into the following repositories:

Installation Guide

For detailed installation instructions please refer to the Installation page.

NNCF can be installed as a regular PyPI package via pip:

pip install nncf

If you want to install both NNCF and the supported PyTorch version in one line, you can do this by simply running:

pip install nncf[torch]

Other viable options besides [torch] are [tf], [onnx] and [openvino].

NNCF is also available via conda:

conda install -c conda-forge nncf

You may also use one of the Dockerfiles in the docker directory to build an image with an environment already set up and ready for running NNCF sample scripts.

System requirements

  • Ubuntu* 18.04 or later (64-bit)
  • Python* 3.7 or later
  • Supported frameworks:
    • PyTorch* >=1.9.1, <1.14
    • TensorFlow* >=2.4.0, <=2.11.1
    • ONNX* ~=1.13.1
    • OpenVINO* >=2022.3.0

This repository is tested on Python* 3.8.10, PyTorch* 1.13.1 (NVidia CUDA* Toolkit 11.6) and TensorFlow* 2.11.1 (NVidia CUDA* Toolkit 11.2).

NNCF Compressed Model Zoo

Results achieved using sample scripts, example patches to third-party repositories and NNCF configuration files provided with this repository. See README.md files for sample scripts and example patches to find instruction and links to exact configuration files and final checkpoints.

PyTorch models

Classification

Model Compression algorithm Dataset Accuracy (drop) %
ResNet-50 INT8 ImageNet 76.46 (-0.31)
ResNet-50 INT8 (per-tensor only) ImageNet 76.39 (-0.24)
ResNet-50 Mixed, 43.12% INT8 / 56.88% INT4 ImageNet 76.05 (0.10)
ResNet-50 INT8 + Sparsity 61% (RB) ImageNet 75.42 (0.73)
ResNet-50 INT8 + Sparsity 50% (RB) ImageNet 75.50 (0.65)
ResNet-50 Filter pruning, 40%, geometric median criterion ImageNet 75.57 (0.58)
Inception V3 INT8 ImageNet 77.45 (-0.12)
Inception V3 INT8 + Sparsity 61% (RB) ImageNet 76.36 (0.97)
MobileNet V2 INT8 ImageNet 71.07 (0.80)
MobileNet V2 INT8 (per-tensor only) ImageNet 71.24 (0.63)
MobileNet V2 Mixed, 58.88% INT8 / 41.12% INT4 ImageNet 70.95 (0.92)
MobileNet V2 INT8 + Sparsity 52% (RB) ImageNet 71.09 (0.78)
MobileNet V3 small INT8 ImageNet 66.98 (0.68)
SqueezeNet V1.1 INT8 ImageNet 58.22 (-0.03)
SqueezeNet V1.1 INT8 (per-tensor only) ImageNet 58.11 (0.08)
SqueezeNet V1.1 Mixed, 52.83% INT8 / 47.17% INT4 ImageNet 57.57 (0.62)
ResNet-18 XNOR (weights), scale/threshold (activations) ImageNet 61.67 (8.09)
ResNet-18 DoReFa (weights), scale/threshold (activations) ImageNet 61.63 (8.13)
ResNet-18 Filter pruning, 40%, magnitude criterion ImageNet 69.27 (0.49)
ResNet-18 Filter pruning, 40%, geometric median criterion ImageNet 69.31 (0.45)
ResNet-34 Filter pruning, 50%, geometric median criterion + KD ImageNet 73.11 (0.19)
GoogLeNet Filter pruning, 40%, geometric median criterion ImageNet 69.47 (0.30)

Object detection

Model Compression algorithm Dataset mAP (drop) %
SSD300-MobileNet INT8 + Sparsity 70% (Magnitude) VOC12+07 train, VOC07 eval 62.95 (-0.72)
SSD300-VGG-BN INT8 VOC12+07 train, VOC07 eval 77.81 (0.47)
SSD300-VGG-BN INT8 + Sparsity 70% (Magnitude) VOC12+07 train, VOC07 eval 77.66 (0.62)
SSD300-VGG-BN Filter pruning, 40%, geometric median criterion VOC12+07 train, VOC07 eval 78.35 (-0.07)
SSD512-VGG-BN INT8 VOC12+07 train, VOC07 eval 80.04 (0.22)
SSD512-VGG-BN INT8 + Sparsity 70% (Magnitude) VOC12+07 train, VOC07 eval 79.68 (0.58)

Semantic segmentation

Model Compression algorithm Dataset mIoU (drop) %
UNet INT8 CamVid 71.89 (0.06)
UNet INT8 + Sparsity 60% (Magnitude) CamVid 72.46 (-0.51)
ICNet INT8 CamVid 67.89 (0.00)
ICNet INT8 + Sparsity 60% (Magnitude) CamVid 67.16 (0.73)
UNet INT8 Mapillary 56.09 (0.15)
UNet INT8 + Sparsity 60% (Magnitude) Mapillary 55.69 (0.55)
UNet Filter pruning, 25%, geometric median criterion Mapillary 55.64 (0.60)

NLP (HuggingFace Transformers-powered models)

PyTorch Model Compression algorithm Dataset Accuracy (Drop) %
BERT-base-chinese INT8 XNLI 77.22 (0.46)
BERT-base-cased INT8 CoNLL2003 99.18 (-0.01)
BERT-base-cased INT8 MRPC 84.8 (-0.24)
BERT-large (Whole Word Masking) INT8 SQuAD v1.1 F1: 92.68 (0.53)
RoBERTa-large INT8 MNLI matched: 89.25 (1.35)
DistilBERT-base INT8 SST-2 90.3 (0.8)
MobileBERT INT8 SQuAD v1.1 F1: 89.4 (0.58)
GPT-2 INT8 WikiText-2 (raw) perplexity: 20.9 (-1.17)

TensorFlow models

Classification

Model Compression algorithm Dataset Accuracy (drop) %
Inception V3 INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations) ImageNet 78.39 (-0.48)
Inception V3 INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations), Sparsity 61% (RB) ImageNet 77.52 (0.39)
Inception V3 Sparsity 54% (Magnitude) ImageNet 77.86 (0.05)
MobileNet V2 INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations) ImageNet 71.63 (0.22)
MobileNet V2 INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations), Sparsity 52% (RB) ImageNet 70.94 (0.91)
MobileNet V2 Sparsity 50% (RB) ImageNet 71.34 (0.51)
MobileNet V2 (TensorFlow Hub MobileNet V2) Sparsity 35% (Magnitude) ImageNet 71.87 (-0.02)
MobileNet V3 (Small) INT8 (per-channel symmetric for weights, per-tensor asymmetric half-range for activations) ImageNet 67.79 (0.59)
MobileNet V3 (Small) INT8 (per-channel symmetric for weights, per-tensor asymmetric half-range for activations) + Sparsity 42% (Magnitude) ImageNet 67.44 (0.94)
MobileNet V3 (Large) INT8 (per-channel symmetric for weights, per-tensor asymmetric half-range for activations) ImageNet 75.04 (0.76)
MobileNet V3 (Large) INT8 (per-channel symmetric for weights, per-tensor asymmetric half-range for activations) + Sparsity 42% (RB) ImageNet 75.24 (0.56)
ResNet-50 INT8 ImageNet 74.99 (0.06)
ResNet-50 INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations) + Sparsity 65% (RB) ImageNet 74.36 (0.69)
ResNet-50 Sparsity 80% (RB) ImageNet 74.38 (0.67)
ResNet-50 Filter pruning, 40%, geometric median criterion ImageNet 74.96 (0.09)
ResNet-50 INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations) + Filter pruning, 40%, geometric median criterion ImageNet 75.09 (-0.04)

Object detection

Model Compression algorithm Dataset mAP (drop) %
RetinaNet INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations) COCO 2017 33.12 (0.31)
RetinaNet Magnitude sparsity (50%) COCO 2017 33.10 (0.33)
RetinaNet Filter pruning, 40% COCO 2017 32.72 (0.71)
RetinaNet INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations) + filter pruning 40% COCO 2017 32.67 (0.76)
YOLO v4 INT8 (per-channel symmetric for weights, per-tensor asymmetric half-range for activations) COCO 2017 46.20 (0.87)
YOLO v4 Magnitude sparsity, 50% COCO 2017 46.49 (0.58)

Instance segmentation

Model Compression algorithm Dataset mAP (drop) %
Mask-R-CNN INT8 (per-tensor symmetric for weights, per-tensor asymmetric half-range for activations) COCO 2017 37.19 (0.14)
Mask-R-CNN Magnitude sparsity, 50% COCO 2017 36.94 (0.39)

ONNX models

Classification

ONNX Model Compression algorithm Dataset Accuracy (Drop) %
ResNet-50 INT8 (Post-Training) ImageNet 74.63 (0.21)
ShuffleNet INT8 (Post-Training) ImageNet 47.25 (0.18)
GoogleNet INT8 (Post-Training) ImageNet 66.36 (0.3)
SqueezeNet V1.0 INT8 (Post-Training) ImageNet 54.3 (0.54)
MobileNet V2 INT8 (Post-Training) ImageNet 71.38 (0.49)
DenseNet-121 INT8 (Post-Training) ImageNet 60.16 (0.8)
VGG-16 INT8 (Post-Training) ImageNet 72.02 (0.0)

Object Detection

ONNX Model Compression algorithm Dataset mAP (drop) %
SSD1200 INT8 (Post-Training) COCO2017 20.17 (0.17)
Tiny-YOLOv2 INT8 (Post-Training) VOC12 29.03 (0.23)

Citing

@article{kozlov2020neural,
    title =   {Neural network compression framework for fast model inference},
    author =  {Kozlov, Alexander and Lazarevich, Ivan and Shamporov, Vasily and Lyalyushkin, Nikolay and Gorbachev, Yury},
    journal = {arXiv preprint arXiv:2002.08679},
    year =    {2020}
}

Contributing Guide

Refer to the CONTRIBUTING.md file for guidelines on contributions to the NNCF repository.

Useful links

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nncf-2.5.0.tar.gz (717.4 kB view details)

Uploaded Source

Built Distribution

nncf-2.5.0-py3-none-any.whl (1.1 MB view details)

Uploaded Python 3

File details

Details for the file nncf-2.5.0.tar.gz.

File metadata

  • Download URL: nncf-2.5.0.tar.gz
  • Upload date:
  • Size: 717.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for nncf-2.5.0.tar.gz
Algorithm Hash digest
SHA256 d1877192b44d36055f39fe212ca0abf04416bac1ff81be1b6cda0fbe82c12ac5
MD5 20e0f9a3f7cdb64d432a9c345e3f73e8
BLAKE2b-256 f821da0cedb2618c5cdc6df0c3b340f27f31de6f4261ed9e2e699daecf22a4c5

See more details on using hashes here.

File details

Details for the file nncf-2.5.0-py3-none-any.whl.

File metadata

  • Download URL: nncf-2.5.0-py3-none-any.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for nncf-2.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 85bc5f9307acfdbc67a39e340f32f2dab5eac138a7a9e90d96d14c8f0877cd80
MD5 acdc868f5057a01e3cc564e7e3505c01
BLAKE2b-256 0067da4c44d198bf719a1360e55b29666f95d74f43b945ebf5bf977181db982f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page