Skip to main content

Dynamic Programming using Neural Networks

Project description

Dynamic Programming with Neural Networks (nndp)

By: Marc de la Barrera i Bardalet, Tim de Silva

Overview

nndp provides a framework for solving finite horizon dynamic programming problems using neural networks that is implemented using the JAX functional programming paradigm and Haiku. This solution technique, introduced and described in detail by Duarte, Fonesca, Goodman, and Parker (2021), applies to problems of the following form:

$$V(s_0)=\max_{a_t\in\Gamma(s_t)} E_0\left[\sum_{t=0}^T u(s_t,a_t)\right],$$

$$s_{t+1}=m(s_{t},a_{t},\epsilon_t), $$

$$s_0 \sim F(\cdot).$$

The state vector is denoted by $s_t=(k_t, x_t)$, where $k_t$ are exogenous states and $x_t$ are endogenous states. We adopt the convention that the first exogenous state in $k_t$ is $t$. The goal is to find a policy function $\pi(s_t)$ that satisfies:

$$\hat V(s_0,\pi)=E_0\left[\sum_{t=0}^T u(s_t,\pi(s_t))\right],$$

$$s_{t+1}=m(s_{t},\pi(s_{t}),\epsilon_t),$$

$$V(s_0)=\hat V(s_0,\pi)\quad \forall s_0.$$

We parametrize $\pi(s_t)=\tilde\pi(s_t,\theta)$ as a fully connected feedforward neural network and update the networks’ parameters, $\theta$, using stochastic gradient descent. To use this framework, the user only needs to write the following functions that are defined by the dynamic programming problem of interest:

  1. u(state, action): reward function for $s_t$ = state and $a_t$ = action
  2. m(key, state, action): state evolution equation for $s_{t+1}$ if $s_t$ = state and $a_t$ = action. key is a JAX RNG key used to simulate any shocks present in the model.
  3. Gamma(state): defines the set of possible actions, $a_t$, at $s_t$ = state
  4. F(key, N): samples N observations from the distribution of $s_0$. key is a JAX RNG key used to simulate any shocks present in the model.
  5. nn_to_action(state, params, nn): defines how the output of a Haiku Neural Network, nn, with parameters, params, is mapped into an action at $s_t$ = state

We provide an example application to the income fluctations problem in docs/source/notebooks/income_fluctuations/main.ipynb to illustrate how this framework can be used.

Installation

nndp requires JAX and Haiku to be installed. To install with pip, run pip install nndp.

References

Duarte, Victor, Julia Fonseca, Jonathan A. Parker, and Aaron Goodman (2021), Simple Allocation Rules and Optimal Portfolio Choice Over the Lifecycle, Working Paper.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nndp-0.1.0.tar.gz (11.8 kB view details)

Uploaded Source

Built Distribution

nndp-0.1.0-py3-none-any.whl (12.6 kB view details)

Uploaded Python 3

File details

Details for the file nndp-0.1.0.tar.gz.

File metadata

  • Download URL: nndp-0.1.0.tar.gz
  • Upload date:
  • Size: 11.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.4

File hashes

Hashes for nndp-0.1.0.tar.gz
Algorithm Hash digest
SHA256 ce6140ad892038f4a0c5224434d0789739800154247511dc74296c98be98c246
MD5 630b5ff8632effd043b9365621f96a68
BLAKE2b-256 413959302e675fd88794d646415a66240d5f22b7e3eeec63993cf482d85e2364

See more details on using hashes here.

File details

Details for the file nndp-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: nndp-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 12.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.4

File hashes

Hashes for nndp-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c70c238152b75ac3481eb690bb36a67b27c687daeefc60534a095ee6b4d09dc9
MD5 a201ee62d4520c3d37d40aa1a1d2f4e4
BLAKE2b-256 bd961c9497af81fa2f906896e843f854d78152a9b184801b0330843d1a013c67

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page