Skip to main content

No project description provided

Project description

Neural Network Signal Processing on Torch

Python version support PyPI version Downloads

NNSPT is a Python library for neural network signal processing on PyTorch.

Table of contents

Authors

Rostislav Epifanov — Researcher in Novosibirsk

Installation

Installation from PyPI:

pip install nnspt

Installation from GitHub:

pip install git+https://github.com/rostepifanov/nnspt

A simple example

from nnspt.segmentation.unet import Unet

model = Unet(encoder='tv-resnet34')

Available components

Encoders

  • ResNet
    • tv-resnet18
    • tv-resnet34
    • tv-resnet50
    • tv-resnet101
    • tv-resnet152
  • ResNeXt
    • tv-resnext50_32x4d
    • tv-resnext101_32x4d
    • tv-resnext101_32x8d
    • tv-resnext101_32x16d
    • tv-resnext101_32x32d
    • tv-resnext101_32x48d
  • DenseNet
    • tv-densenet121
    • tv-densenet169
    • tv-densenet201
    • tv-densenet161
  • EfficientNetV1
    • timm-efficientnet-b0
    • timm-efficientnet-b1
    • timm-efficientnet-b2
    • timm-efficientnet-b3
    • timm-efficientnet-b4
    • timm-efficientnet-b5
    • timm-efficientnet-b6
    • timm-efficientnet-b7
  • EfficientNetLite
    • timm-efficientnet-lite0
    • timm-efficientnet-lite1
    • timm-efficientnet-lite2
    • timm-efficientnet-lite3
    • timm-efficientnet-lite4

Pretraining

  • Autoencoder

Segmentation

Citing

If you find this library useful for your research, please consider citing:

@misc{epifanov2023ecgmentations,
  Author = {Rostislav Epifanov},
  Title = {NNSTP},
  Year = {2023},
  Publisher = {GitHub},
  Journal = {GitHub repository},
  Howpublished = {\url{https://github.com/rostepifanov/nnspt}}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

nnspt-0.0.1-py2.py3-none-any.whl (22.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file nnspt-0.0.1-py2.py3-none-any.whl.

File metadata

  • Download URL: nnspt-0.0.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 22.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.0

File hashes

Hashes for nnspt-0.0.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 71dc45c1d1093e52838653a022aaf260a1b9d240ae7e33bd2421683d5571346f
MD5 eb8c0265db71bb64bed295419babbb5c
BLAKE2b-256 cafd5b91618e1ea1ee902d517240134c916c06c55fa018d2917746678e8fbffb

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page