No project description provided
Project description
Neural Network Signal Processing on Torch
NNSPT is a Python library for neural network signal processing on PyTorch.
Table of contents
Authors
Rostislav Epifanov — Researcher in Novosibirsk
Installation
Installation from PyPI:
pip install nnspt
Installation from GitHub:
pip install git+https://github.com/rostepifanov/nnspt
A simple example
from nnspt.segmentation.unet import Unet
model = Unet(encoder='tv-resnet34')
Available components
Encoders
-
ResNet
- tv-resnet18
- tv-resnet34
- tv-resnet50
- tv-resnet101
- tv-resnet152
-
ResNeXt
- tv-resnext50_32x4d
- tv-resnext101_32x4d
- tv-resnext101_32x8d
- tv-resnext101_32x16d
- tv-resnext101_32x32d
- tv-resnext101_32x48d
-
DenseNet
- tv-densenet121
- tv-densenet169
- tv-densenet201
- tv-densenet161
-
EfficientNetV1
- timm-efficientnet-b0
- timm-efficientnet-b1
- timm-efficientnet-b2
- timm-efficientnet-b3
- timm-efficientnet-b4
- timm-efficientnet-b5
- timm-efficientnet-b6
- timm-efficientnet-b7
-
EfficientNetLite
- timm-efficientnet-lite0
- timm-efficientnet-lite1
- timm-efficientnet-lite2
- timm-efficientnet-lite3
- timm-efficientnet-lite4
Pretraining
- Autoencoder
Segmentation
- Unet [paper]
Citing
If you find this library useful for your research, please consider citing:
@misc{epifanov2023ecgmentations,
Author = {Rostislav Epifanov},
Title = {NNSTP},
Year = {2023},
Publisher = {GitHub},
Journal = {GitHub repository},
Howpublished = {\url{https://github.com/rostepifanov/nnspt}}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
nnspt-0.0.1-py2.py3-none-any.whl
(22.9 kB
view details)
File details
Details for the file nnspt-0.0.1-py2.py3-none-any.whl
.
File metadata
- Download URL: nnspt-0.0.1-py2.py3-none-any.whl
- Upload date:
- Size: 22.9 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 71dc45c1d1093e52838653a022aaf260a1b9d240ae7e33bd2421683d5571346f |
|
MD5 | eb8c0265db71bb64bed295419babbb5c |
|
BLAKE2b-256 | cafd5b91618e1ea1ee902d517240134c916c06c55fa018d2917746678e8fbffb |