A tiny Python library to create and train feedforward neural networks
Project description
<p align="center">
<img src="https://gvinciguerra.github.io/nnweaver/_static/logo.svg">
</p>
# NNWeaver #
[![Coverage Status](https://coveralls.io/repos/github/gvinciguerra/nnweaver/badge.svg?branch=master)](https://coveralls.io/github/gvinciguerra/nnweaver?branch=master)
[![Build Status](https://travis-ci.org/gvinciguerra/nnweaver.svg?branch=master)](https://travis-ci.org/gvinciguerra/nnweaver)
NNWeaver is a *tiny* Python library to create and train feedforward neural networks. We developed this library as a project for a Machine Learning course.
Some of its features are:
1. Simple API, easy to learn.
2. Validation functions included.
3. Lightweight and with few dependencies.
4. Live loss/epoch curve display.
## Installation ##
You can install NNWeaver from the GitHub source with the following commands:
git clone https://github.com/gvinciguerra/nnweaver.git
cd nnweaver
python3 setup.py install
You can also run the test suite with `python3 setup.py test`.
## Getting started ##
### Specify a Neural Network Topology ###
You can create a feedforward neural network specifying the number of inputs as the argument of [`NN`](https://gvinciguerra.github.io/nnweaver/nnweaver.html#nnweaver.nn.NN), and the number of outputs by adding a [`Layer`](https://gvinciguerra.github.io/nnweaver/nnweaver.html#nnweaver.nn.Layer):
from nnweaver import *
nn = NN(3)
nn.add_layer(Layer(5, Linear))
You can always add more layers, specify an activation function and a weights initializer, as the following lines of code show:
nn.add_layer(Layer(7, Sigmoid))
nn.add_layer(Layer(6, Rectifier, uniform(0, 0.05)))
nn.add_layer(Layer(42, TanH, glorot_uniform()))
See [`activations`](https://gvinciguerra.github.io/nnweaver/nnweaver.html#module-nnweaver.activations) for the list of available activation functions.
### Train the Neural Network ###
Now, choose a [`Loss`](https://gvinciguerra.github.io/nnweaver/nnweaver.html#nnweaver.losses.Loss) function, pass it to an [`Optimizer`](https://gvinciguerra.github.io/nnweaver/nnweaver.html#nnweaver.optimizers.Optimizer) (like the stochastic gradient descent) and start the training:
sgd = SGD(MSE)
sgd.train(nn, x, y, learning_rate=0.3)
There are other arguments to pass to the [`SGD.train()`](https://gvinciguerra.github.io/nnweaver/nnweaver.html#nnweaver.optimizers.SGD.train) method, for example:
sgd.train(nn, x_train, y_train,
learning_rate_time_based(0.25, 0.001),
batch_size=10, epochs=100, momentum=0.85)
Also, you may want to control the model complexity. [`SGD.train()`](https://gvinciguerra.github.io/nnweaver/nnweaver.html#nnweaver.optimizers.SGD.train) has a `regularizer` argument, that accepts an instance of the [`L1L2Regularizer`](https://gvinciguerra.github.io/nnweaver/nnweaver.html#nnweaver.regularizers.L1L2Regularizer) class.
### A very, very simple example ###
<img src="https://github.com/gvinciguerra/nnweaver/blob/gh-pages/_images/nnweaver.gif?raw=true" width="550" />
## Documentation ##
For more information, tutorials, and API reference, please visit [NNweaver's online documentation](https://gvinciguerra.github.io/nnweaver/index.html) or build your own offline copy executing `python3 setup.py docs`.
## License ##
This project is licensed under the terms of the MIT License.
<img src="https://gvinciguerra.github.io/nnweaver/_static/logo.svg">
</p>
# NNWeaver #
[![Coverage Status](https://coveralls.io/repos/github/gvinciguerra/nnweaver/badge.svg?branch=master)](https://coveralls.io/github/gvinciguerra/nnweaver?branch=master)
[![Build Status](https://travis-ci.org/gvinciguerra/nnweaver.svg?branch=master)](https://travis-ci.org/gvinciguerra/nnweaver)
NNWeaver is a *tiny* Python library to create and train feedforward neural networks. We developed this library as a project for a Machine Learning course.
Some of its features are:
1. Simple API, easy to learn.
2. Validation functions included.
3. Lightweight and with few dependencies.
4. Live loss/epoch curve display.
## Installation ##
You can install NNWeaver from the GitHub source with the following commands:
git clone https://github.com/gvinciguerra/nnweaver.git
cd nnweaver
python3 setup.py install
You can also run the test suite with `python3 setup.py test`.
## Getting started ##
### Specify a Neural Network Topology ###
You can create a feedforward neural network specifying the number of inputs as the argument of [`NN`](https://gvinciguerra.github.io/nnweaver/nnweaver.html#nnweaver.nn.NN), and the number of outputs by adding a [`Layer`](https://gvinciguerra.github.io/nnweaver/nnweaver.html#nnweaver.nn.Layer):
from nnweaver import *
nn = NN(3)
nn.add_layer(Layer(5, Linear))
You can always add more layers, specify an activation function and a weights initializer, as the following lines of code show:
nn.add_layer(Layer(7, Sigmoid))
nn.add_layer(Layer(6, Rectifier, uniform(0, 0.05)))
nn.add_layer(Layer(42, TanH, glorot_uniform()))
See [`activations`](https://gvinciguerra.github.io/nnweaver/nnweaver.html#module-nnweaver.activations) for the list of available activation functions.
### Train the Neural Network ###
Now, choose a [`Loss`](https://gvinciguerra.github.io/nnweaver/nnweaver.html#nnweaver.losses.Loss) function, pass it to an [`Optimizer`](https://gvinciguerra.github.io/nnweaver/nnweaver.html#nnweaver.optimizers.Optimizer) (like the stochastic gradient descent) and start the training:
sgd = SGD(MSE)
sgd.train(nn, x, y, learning_rate=0.3)
There are other arguments to pass to the [`SGD.train()`](https://gvinciguerra.github.io/nnweaver/nnweaver.html#nnweaver.optimizers.SGD.train) method, for example:
sgd.train(nn, x_train, y_train,
learning_rate_time_based(0.25, 0.001),
batch_size=10, epochs=100, momentum=0.85)
Also, you may want to control the model complexity. [`SGD.train()`](https://gvinciguerra.github.io/nnweaver/nnweaver.html#nnweaver.optimizers.SGD.train) has a `regularizer` argument, that accepts an instance of the [`L1L2Regularizer`](https://gvinciguerra.github.io/nnweaver/nnweaver.html#nnweaver.regularizers.L1L2Regularizer) class.
### A very, very simple example ###
<img src="https://github.com/gvinciguerra/nnweaver/blob/gh-pages/_images/nnweaver.gif?raw=true" width="550" />
## Documentation ##
For more information, tutorials, and API reference, please visit [NNweaver's online documentation](https://gvinciguerra.github.io/nnweaver/index.html) or build your own offline copy executing `python3 setup.py docs`.
## License ##
This project is licensed under the terms of the MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
nnweaver-0.2.tar.gz
(15.5 kB
view details)
Built Distribution
nnweaver-0.2-py3-none-any.whl
(18.5 kB
view details)
File details
Details for the file nnweaver-0.2.tar.gz
.
File metadata
- Download URL: nnweaver-0.2.tar.gz
- Upload date:
- Size: 15.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 770ae4efbd369731e10aaa0589e1d922757de37aa180c9d11a53914a2a7c7f5c |
|
MD5 | c6ada2991e0f6c89634f6487e34ae3c3 |
|
BLAKE2b-256 | 7c11446600dc15f2f73923dad17da4d91460e4d1b8cfb095f645a89478edfacc |
File details
Details for the file nnweaver-0.2-py3-none-any.whl
.
File metadata
- Download URL: nnweaver-0.2-py3-none-any.whl
- Upload date:
- Size: 18.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ac0070cb66e30f3e7798be15897c82685d93b533ea4f46ea957f73afe6c8098 |
|
MD5 | b8b1c7559d667b055dc1ef7fec0ecf52 |
|
BLAKE2b-256 | 5ffe8753ebabfc20ac862ffc6089569516c86cb5f8c3fc90a351ff89ad02c368 |