Skip to main content

Python bindings for the nod library.

Project description

py-nod

Python 3.6 bindings for the NOD, a library for traversing, dumping, and authoring GameCube and Wii optical disc images.

Usage

Unpacking

import nod

def progress_callback(path, progress):
    if args.verbose:
        print("Extraction {:.0%} Complete; Current node: {}".format(progress, path))

context = nod.ExtractionContext()
context.set_progress_callback(progress_callback)

try:
    disc, is_wii = nod.open_disc_from_image("game.iso")
    data_partition = disc.get_data_partition()
    if not data_partition:
        raise RuntimeError("Could not find a data partition in the disc.")
    data_partition.extract_to_directory("dir_out", context)
except RuntimeError as e:
    raise Exception("Could not extract disc at 'game.iso' to 'dir_out': {}".format(e))

Packing

import nod

if nod.DiscBuilderGCN.calculate_total_size_required("dir_out") is None:
    raise Exception("Image built with given directory would pass the maximum size.")

def fprogress_callback(progress: float, name: str, bytes: int):
    print("\r" + " " * 100, end="")
    print("\r{:.0%} {} {} B".format(progress, name, bytes), flush=True)

disc_builder = nod.DiscBuilderGCN("game.iso", fprogress_callback)
try:
    disc_builder.build_from_directory("dir_out")    
except RuntimeError as e:
    raise Exception("Failure building the image: {}".format(e))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nod-1.8.0.tar.gz (1.0 MB view details)

Uploaded Source

Built Distributions

nod-1.8.0-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

nod-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nod-1.8.0-cp310-cp310-macosx_10_15_universal2.whl (561.8 kB view details)

Uploaded CPython 3.10 macOS 10.15+ universal2 (ARM64, x86-64)

nod-1.8.0-cp39-cp39-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

nod-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nod-1.8.0-cp39-cp39-macosx_10_15_x86_64.whl (498.0 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

nod-1.8.0-cp38-cp38-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

nod-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nod-1.8.0-cp38-cp38-macosx_10_15_x86_64.whl (497.5 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

nod-1.8.0-cp37-cp37m-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

nod-1.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nod-1.8.0-cp37-cp37m-macosx_10_15_x86_64.whl (497.3 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file nod-1.8.0.tar.gz.

File metadata

  • Download URL: nod-1.8.0.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nod-1.8.0.tar.gz
Algorithm Hash digest
SHA256 0e6fe945ec9301728be888fc4faefc07180fb813942895e3e02a3390db5ad23b
MD5 35efca3d5191c4e225cbb42534f37ccc
BLAKE2b-256 0a5700378cf649c3a7704732d09e9ee6735fa4bfe97da50e4a207cf02b620b0e

See more details on using hashes here.

File details

Details for the file nod-1.8.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: nod-1.8.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nod-1.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f00096db1efaf497beb26e853298373134cb5eaaa8e09973cb6d1d7589472fa6
MD5 f665f4b307330e1bfa8dff45e4887848
BLAKE2b-256 0e39ff0e2fa0072217f55daa35983f312fc63d4a0bb3c25db9cdf9e7bce2d3b3

See more details on using hashes here.

File details

Details for the file nod-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b0eb0e035849cfb63d4220b6e31d2d2b57e257f9072299327c5c62b71583a6e
MD5 e7a2a772b31739f1acd0fae4c0079bb9
BLAKE2b-256 d252ecc7853f2cb07bae580a2a65e9709a46ec6578dcdc81f8b958444aaf3471

See more details on using hashes here.

File details

Details for the file nod-1.8.0-cp310-cp310-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for nod-1.8.0-cp310-cp310-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 4e14b324e155bb75cd4763f6c5a7d3cda72c8886c909e629fd4597f12cebd956
MD5 0c1b2d3f45f1fe9aa8454446b542a1c1
BLAKE2b-256 83822eb35818c4432cb1de5a76ebb9af0725ffb1fada62c2d708a02e20ec8d9e

See more details on using hashes here.

File details

Details for the file nod-1.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nod-1.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nod-1.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 566105d07b82b75d738efa505167223a0d737c27a1702dc11a9385f00a815a3a
MD5 08875a5e6fb7ebf09b7949c98cd58ea2
BLAKE2b-256 223a87cc8e6ad51721608a85ad90161530fb55c4bcf399d6c156a0239f9788ce

See more details on using hashes here.

File details

Details for the file nod-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15e61de6291ce2e8a16edc7ca8f38cb28eb5cc9a0f4ea844c4cc2f987da69e3c
MD5 8d6e203691f7f1b0a78b1731a0616756
BLAKE2b-256 946533db3b8566c182e46dc63e5fb3174a3abb3b9213f9cbb1931ca7094188e7

See more details on using hashes here.

File details

Details for the file nod-1.8.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.8.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 da7b23ec9fdc17490e35a1a9b5110715fddd47f56e76b62e482683f7f1c43cab
MD5 4d825a41a7af44b67af5872f830ef660
BLAKE2b-256 85313c333fc264d368c39e8bc5ba8c62ef8eb0784021c49b31e277d04fe63dc8

See more details on using hashes here.

File details

Details for the file nod-1.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nod-1.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nod-1.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ca887db96ac59c692b0c7171f43f1b24bdc7471409dd147035967a54b5743f0c
MD5 dff011de54853762c98bdc16e6d65d47
BLAKE2b-256 661aa91eb633a17f53d1b2f352092da9cca44354ad868b52191fa44971ad79a9

See more details on using hashes here.

File details

Details for the file nod-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 67c4824246b57016eb2ca98723bde07528519ca45489260b25bc0380a90c665b
MD5 c25ac95cbe22accc18b1e31f37047d6c
BLAKE2b-256 5232112628bd5f0d8b9d6716d6a937cf8b59b693f4bf0fcd7f940799e0704850

See more details on using hashes here.

File details

Details for the file nod-1.8.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.8.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 fdecd6a6b31be30ef4ec419be61a08fd97c5edcbc73605fbfcdb5536c94e243a
MD5 9aa7d32227bfdcac4d3b032658787106
BLAKE2b-256 7312f4593c7768a20ce6da0b2aa9f4a8d7c139eb6914b88e144c0013f3e676ea

See more details on using hashes here.

File details

Details for the file nod-1.8.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: nod-1.8.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for nod-1.8.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 933f2ed0ca5707f86a035b330032e37e9c4cd7d98bfdb2a10c5cc979c497b1c3
MD5 e1d426c8576ea353394c5b68459d617f
BLAKE2b-256 c9543209926f00181a56f9d1ea50d07651d6380acfba27e13359d68a38a929a1

See more details on using hashes here.

File details

Details for the file nod-1.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0012ce9fd9eeb64e9d6af4fae42cdb02372fa4d1afcd1b1c1e0e0602c0f4254a
MD5 fce58026bca5065bc71bb59ca31afb25
BLAKE2b-256 ed1d8b65715c92742240da3d8f33219bbec3c9dd1d3c7d9d93e67db179e97386

See more details on using hashes here.

File details

Details for the file nod-1.8.0-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nod-1.8.0-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 8ca02f1685f1b0b3d0e475bd3b2fefd85287bcabfa66832e3f92c69745942908
MD5 a973f5fd39e8fba1a8e939d032aa285f
BLAKE2b-256 2c48f49ac855b069d23cec5de604830597d420c3e11f19b4cd3b2b0fee8c77f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page